График линейной функции, прямая, строится по двум точкам. Для удобства выберем x=0 (y=6) и x=2 (y=0). Наносим на координатную плоскость точки (0,6) и (2,0) и проводим через них прямую. Для ответа на второй вопрос достаточно проверить, получим ли мы верное числовое равенство, подставив вместо x и y в исходную функцию абсциссу и ординату точки А соответственно. Отсюда: -24 = 6 - 3*10; -24 = 6-30; -24=-24 - верное числовое равенство. Таким образом, график исходной функции проходит через заданную точку А.
ФСУ (формула сокращённого умножения) (а+б)^2 = а^2+2аб+ б^2 (а+б)(а-б)= а^2-б^2 (х+4)*(х-4)-(х+12)^2 1 действие: (х+4)(х-4), сокращаем по ФСУ (а-б)(а+б) получается (х+4)(х-4)=х^2-4^2=х^2-16 2 действие: -(х+12)^2, если перед скобкой стоит знак минус, все внутри скобки меняется на другой знак (-х-12)^2, далее сокращаем по фсу (-х+12)^2= -х^2-24х-144 3 действие: х^2-16-х^2-24х-144, х^2 и -х^2 самоуничтожаются, у нас остаётся -16-24х-144, -16-144-24х=-160-24х если кратко, то (х-4)(х+4)-(х+12)^2=х^2-16-х^2-24х-144=-16-24х-144=-160-24х
Для ответа на второй вопрос достаточно проверить, получим ли мы верное числовое равенство, подставив вместо x и y в исходную функцию абсциссу и ординату точки А соответственно. Отсюда:
-24 = 6 - 3*10;
-24 = 6-30;
-24=-24 - верное числовое равенство.
Таким образом, график исходной функции проходит через заданную точку А.
(а+б)^2 = а^2+2аб+ б^2
(а+б)(а-б)= а^2-б^2
(х+4)*(х-4)-(х+12)^2
1 действие: (х+4)(х-4), сокращаем по ФСУ (а-б)(а+б)
получается (х+4)(х-4)=х^2-4^2=х^2-16
2 действие: -(х+12)^2, если перед скобкой стоит знак минус, все внутри скобки меняется на другой знак (-х-12)^2, далее сокращаем по фсу (-х+12)^2= -х^2-24х-144
3 действие: х^2-16-х^2-24х-144, х^2 и -х^2 самоуничтожаются, у нас остаётся -16-24х-144, -16-144-24х=-160-24х
если кратко, то (х-4)(х+4)-(х+12)^2=х^2-16-х^2-24х-144=-16-24х-144=-160-24х