(а+5)х²-(а+6)х+3=0 D=(-(-(a+6))²-4×(a+5)×3=(a+6)²-12(a+5)=a²+12a+36-12a-60=a²-24 чтобы найти а, необходимо D>=0 ( больше либо равно) при данном условии квадратное (а+5)х²-(а+6)х+3=0 уравнение имеет решение.
а²-24>=0 а²>=24 а1>=√24 а2>=-√24
Проверка:
а=-6-истина.
(-6+5)х²-(-6+6)х+3=0 -х²+3=0 -х²=-3|×(-1) х²=3 х 1=√3 х2=-√3
D=(-(-(a+6))²-4×(a+5)×3=(a+6)²-12(a+5)=a²+12a+36-12a-60=a²-24
чтобы найти а, необходимо D>=0 ( больше либо равно) при данном условии квадратное (а+5)х²-(а+6)х+3=0 уравнение имеет решение.
а²-24>=0
а²>=24
а1>=√24
а2>=-√24
Проверка:
а=-6-истина.
(-6+5)х²-(-6+6)х+3=0
-х²+3=0
-х²=-3|×(-1)
х²=3
х 1=√3
х2=-√3
а=6- истина.
(6+5)х²-(6+6)х+3=0
11х²-12х+3=0
D=(-(-12))²-4×11×3=144-132=12
x1=(-(-12)-√12)/2×11=(12-√12)/22=(12-3,46)/22=8,54/22=0,3882
x2=(-(-12)+√12)/2×11=(12+√12)/22=(12+3,46)/22=15,46/22=0,7029
ответ: а€N, где N€(-беск.;-√24] и N€[√24;+беск.), €-знак принадлежит.
Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.