ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.