Обозначим расстояние AB = S км. Скорость катера в стоячей воде v км/ч, скорость течения w км/ч. Система: { S/(v+w) = 5,5 - движение катера по течению { S/(v-w) = 6,5 - движение катера против течения { S/w = 71,5 - движение плота, равное скорости течения. Получаем { S = 71,5w = 5,5*(v + w) = 5,5v + 5,5w { S = 71,5w = 6,5*(v - w) = 6,5v - 6,5w Приравниваем правые части 5,5v + 5,5w = 6,5v - 6,5w 5,5w + 6,5w = 6,5v - 5,5v 12w = v Скорость катера в 12 раз больше скорости течения. S = 71,5w = 5,5*13w = 6,5*11w Найти расстояние из таких условий не получается.
Task/26525850 -------------------- Решите через систему √2x-x² +1 ≥ 2x - 3 . --------------- √( 2x- x² +1) ≥ 2x - 3 . ОДЗ данного неравенства: 2x - x² +1 ≥ 0 ⇔ x² - 2x - 1 ≤ 0 ⇔ x ∈ [ 1 - √2 ; 1 + √2 ] . Будем рассматривать только эти x, другие x не могут являться решениями данного неравенства. 1. Если 2x - 3 < 0 ,то есть x < 1,5 , то все такие x из ОДЗ , удовлетворяющие этому условию, являются решениями неравенства. Значит, все x ∈ [ 1 -√2 ; 1,5 ) − решения неравенства . 2. Если 2x-3 ≥ 0 , то есть x ≥ 1,5 ,а с учетом ОДЗ это означает, что 1,5≤ x ≤ 1 + √2 , иначе x ∈ [ 1,5 ; 1+√2] ,то обе части неравенства неотрицательны. Возведём обе части неравенства в квадрат: 2x- x² +1 ≥ ( 2x - 3 )² ; 2x- x² +1 ≥ 4x² - 12x +9 ; 5x² -14x +8 ≤ 0 ; Уравнение 5x² -14x +8 =0 имеет корни x₁ =(7-3)/5 =4/5 и x₂=(7+3)/5=2 Значит, решением неравенства являются x∈ [ 0,8 ; 2]. С учётом x ∈ [ 1,5 ; 1+√2] получается, что на данном множестве решениями являются x ∈ [ 1,5 ; 2] . Объединяя результаты пунктов 1 и 2, получаем x ∈ [ 1 -√2 ; 1,5 ) ∪ [ 1,5 ; 2] , т.е. x ∈ [ 1 -√2 ; 2] .
ответ : x ∈ [ 1 -√2 ; 2] . * * * * * * * * * * * * P.S. * * * * * * * * * * * * Это решение можно записать другим ⇔ совокупности двух систем неравенств [ { 2x - 3 < 0 ; 2x - x² +1 ≥ 0 . [ { х <1,5 ; 1 -√2 ≤ x ≤ 1+ √2 . [ { 2x - 3 ≥ 0 ; 2x - x² + 1 ≥ (2x - 3)² . ⇔ [{ x ≥1,5 ; x∈ [ 0,8 ; 2] . ⇔ --- [ x ∈ [1 -√2 ;1,5 ) [ x ∈ [ 1,5 ; 2] . ⇔ x ∈ [1 -√2 ;2 ] . см еще и приложения
Скорость катера в стоячей воде v км/ч, скорость течения w км/ч.
Система:
{ S/(v+w) = 5,5 - движение катера по течению
{ S/(v-w) = 6,5 - движение катера против течения
{ S/w = 71,5 - движение плота, равное скорости течения.
Получаем
{ S = 71,5w = 5,5*(v + w) = 5,5v + 5,5w
{ S = 71,5w = 6,5*(v - w) = 6,5v - 6,5w
Приравниваем правые части
5,5v + 5,5w = 6,5v - 6,5w
5,5w + 6,5w = 6,5v - 5,5v
12w = v
Скорость катера в 12 раз больше скорости течения.
S = 71,5w = 5,5*13w = 6,5*11w
Найти расстояние из таких условий не получается.
--------------------
Решите через систему √2x-x² +1 ≥ 2x - 3 .
---------------
√( 2x- x² +1) ≥ 2x - 3 .
ОДЗ данного неравенства: 2x - x² +1 ≥ 0 ⇔ x² - 2x - 1 ≤ 0 ⇔
x ∈ [ 1 - √2 ; 1 + √2 ] .
Будем рассматривать только эти x, другие x не могут являться решениями данного неравенства.
1.
Если 2x - 3 < 0 ,то есть x < 1,5 , то все такие x из ОДЗ , удовлетворяющие этому условию, являются решениями неравенства. Значит, все x ∈ [ 1 -√2 ; 1,5 ) − решения неравенства .
2.
Если 2x-3 ≥ 0 , то есть x ≥ 1,5 ,а с учетом ОДЗ это означает, что 1,5≤ x ≤ 1 + √2 , иначе x ∈ [ 1,5 ; 1+√2] ,то обе части неравенства неотрицательны.
Возведём обе части неравенства в квадрат:
2x- x² +1 ≥ ( 2x - 3 )² ;
2x- x² +1 ≥ 4x² - 12x +9 ;
5x² -14x +8 ≤ 0 ;
Уравнение 5x² -14x +8 =0 имеет корни x₁ =(7-3)/5 =4/5 и x₂=(7+3)/5=2
Значит, решением неравенства являются x∈ [ 0,8 ; 2].
С учётом x ∈ [ 1,5 ; 1+√2] получается, что на данном множестве решениями являются x ∈ [ 1,5 ; 2] . Объединяя результаты пунктов 1 и 2, получаем x ∈ [ 1 -√2 ; 1,5 ) ∪ [ 1,5 ; 2] , т.е. x ∈ [ 1 -√2 ; 2] .
ответ : x ∈ [ 1 -√2 ; 2] .
* * * * * * * * * * * * P.S. * * * * * * * * * * * *
Это решение можно записать другим
⇔ совокупности двух систем неравенств
[ { 2x - 3 < 0 ; 2x - x² +1 ≥ 0 . [ { х <1,5 ; 1 -√2 ≤ x ≤ 1+ √2 .
[ { 2x - 3 ≥ 0 ; 2x - x² + 1 ≥ (2x - 3)² . ⇔ [{ x ≥1,5 ; x∈ [ 0,8 ; 2] . ⇔
---
[ x ∈ [1 -√2 ;1,5 )
[ x ∈ [ 1,5 ; 2] . ⇔ x ∈ [1 -√2 ;2 ] .
см еще и приложения