Свойства функции y=sinx
1. Область определения — множество R всех действительных чисел.
2. Множество значений — отрезок [−1;1].
3. Функция y=sinx периодическая с периодом T= 2π.
4. Функция y=sinx — нечётная.
5. Функция y=sinx принимает:
- значение, равное 0, при x=πn,n∈Z;
- наибольшее значение, равное 1, при x=π2+2πn,n∈Z;
- наименьшее значение, равное −1, при x=−π2+2πn,n∈Z;
- положительные значения на интервале (0;π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z;
- отрицательные значения на интервале (π;2π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z.
6. Функция y=sinx:
- возрастает на отрезке
[−π2;π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z;
- убывает на отрезке
[π2;3π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z.
Объяснение:
походу) если неправильно сори)
Решение системы уравнений v=12
z=15
Решить систему уравнений методом подстановки.
(z+v)/9-(z-v)/3=2
(2z-v)/6-(3z+2v)/3=−20
Первое уравнение умножить на 9, второе на 6, чтобы избавиться от дроби:
(z+v)-3(z-v)=18
(2z-v)-2(3z+2v)=−120
Раскроем скобки:
z+v-3z+3v=18
2z-v-6z-4v= -120
Приведём подобные члены:
4v-2z=18
-4z-5v= -120
Разделим первое уравнение на 2, второе на 5 для удобства вычислений:
2v-z=9
-0,8z-v= -24
Выразим z через v в первом уравнении, подставим выражение во второе уравнение и вычислим v:
-z=9-2v
z=2v-9
-0,8(2v-9)-v= -24
-1,6v+7,2-v= -24
-2,6v= -24-7,2
-2,6v= -31,2
v= -31,2/-2,6
v=12
z=2*12-9
z=24-9
Свойства функции y=sinx
1. Область определения — множество R всех действительных чисел.
2. Множество значений — отрезок [−1;1].
3. Функция y=sinx периодическая с периодом T= 2π.
4. Функция y=sinx — нечётная.
5. Функция y=sinx принимает:
- значение, равное 0, при x=πn,n∈Z;
- наибольшее значение, равное 1, при x=π2+2πn,n∈Z;
- наименьшее значение, равное −1, при x=−π2+2πn,n∈Z;
- положительные значения на интервале (0;π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z;
- отрицательные значения на интервале (π;2π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z.
6. Функция y=sinx:
- возрастает на отрезке
[−π2;π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z;
- убывает на отрезке
[π2;3π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z.
Объяснение:
походу) если неправильно сори)
Решение системы уравнений v=12
z=15
Объяснение:
Решить систему уравнений методом подстановки.
(z+v)/9-(z-v)/3=2
(2z-v)/6-(3z+2v)/3=−20
Первое уравнение умножить на 9, второе на 6, чтобы избавиться от дроби:
(z+v)-3(z-v)=18
(2z-v)-2(3z+2v)=−120
Раскроем скобки:
z+v-3z+3v=18
2z-v-6z-4v= -120
Приведём подобные члены:
4v-2z=18
-4z-5v= -120
Разделим первое уравнение на 2, второе на 5 для удобства вычислений:
2v-z=9
-0,8z-v= -24
Выразим z через v в первом уравнении, подставим выражение во второе уравнение и вычислим v:
-z=9-2v
z=2v-9
-0,8(2v-9)-v= -24
-1,6v+7,2-v= -24
-2,6v= -24-7,2
-2,6v= -31,2
v= -31,2/-2,6
v=12
z=2v-9
z=2*12-9
z=24-9
z=15
Решение системы уравнений v=12
z=15