1-ый кран наполнит пустую ванну за 18 минут; 2-ой кран опорожнит полную ванну за 12 минут
Объяснение:
Пусть вся ванна 1 (единица), а х минут это время за которое первый кран наполнит ванну, тогда время за которое второй кран опорожнит ванну, будет х-6 минут. Производительность первого крана на наполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а совместная производительность на опорожнение ванны 1/36.
Получаем уравнение:
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х²-6х-216=0
D=900
х₁=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х₂=18 (мин) время за которое первый кран наполнит пустую ванну.
18-6=12 (мин) время за которое второй кран опорожнит полную ванну.
1. Цифры 4, 5 и 6 образуют трёхзначные числа, то есть три позиции в числе _ _ _ . Пусть на первую позицию мы можем поставить одну из 3 цифр, тогда, следуя тому, что цифры в числе не повторяются, на вторую позицию мы можем поставить одну из 2 цифр, а на третью позицию мы можем поставить оставшуюся цифру. В итоге для каждой из 3 цифры, которые можно поставить на первую позицию, приходятся 2 цифры, которые можно поставить на вторую позицию, то есть 3*2=6 комбинаций. Для каждой такой комбинации первая позиция-вторая позиция приходится оставшаяся цифра, которую мы безусловно поставим на третью позицию, то есть 6*1=6 комбинаций. ответ: 6.
2. Пользуясь признаком делимости на 2, получим, что последней цифрой в получающихся трёхзначных числах может быть только цифра 8. Тогда всё зависит от цифр 5 и 7, потому что каждой комбинации из этих цифр соответствует одна цифра на третьей позиции в трёхзначном числе **8, где ** - комбинация цифр 5 и 7. Но не так уж и много расставить эти цифры без повторов. Аналогично решению первой задачи получим, что каждой из двух возможных цифр (5 или 7) для первой позиции приходится одна цифра из второй позиции (если первая 5, то вторая 7, а если первая 7, то вторая 5). Тогда 2*1=2 комбинации. ответ: 2 чётных числа.
1-ый кран наполнит пустую ванну за 18 минут; 2-ой кран опорожнит полную ванну за 12 минут
Объяснение:
Пусть вся ванна 1 (единица), а х минут это время за которое первый кран наполнит ванну, тогда время за которое второй кран опорожнит ванну, будет х-6 минут. Производительность первого крана на наполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а совместная производительность на опорожнение ванны 1/36.
Получаем уравнение:
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х²-6х-216=0
D=900
х₁=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х₂=18 (мин) время за которое первый кран наполнит пустую ванну.
18-6=12 (мин) время за которое второй кран опорожнит полную ванну.
1. Цифры 4, 5 и 6 образуют трёхзначные числа, то есть три позиции в числе _ _ _ . Пусть на первую позицию мы можем поставить одну из 3 цифр, тогда, следуя тому, что цифры в числе не повторяются, на вторую позицию мы можем поставить одну из 2 цифр, а на третью позицию мы можем поставить оставшуюся цифру. В итоге для каждой из 3 цифры, которые можно поставить на первую позицию, приходятся 2 цифры, которые можно поставить на вторую позицию, то есть 3*2=6 комбинаций. Для каждой такой комбинации первая позиция-вторая позиция приходится оставшаяся цифра, которую мы безусловно поставим на третью позицию, то есть 6*1=6 комбинаций. ответ: 6.
2. Пользуясь признаком делимости на 2, получим, что последней цифрой в получающихся трёхзначных числах может быть только цифра 8. Тогда всё зависит от цифр 5 и 7, потому что каждой комбинации из этих цифр соответствует одна цифра на третьей позиции в трёхзначном числе **8, где ** - комбинация цифр 5 и 7. Но не так уж и много расставить эти цифры без повторов. Аналогично решению первой задачи получим, что каждой из двух возможных цифр (5 или 7) для первой позиции приходится одна цифра из второй позиции (если первая 5, то вторая 7, а если первая 7, то вторая 5). Тогда 2*1=2 комбинации. ответ: 2 чётных числа.