Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^4+1)(6^4-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^8-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^16-1)=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^32-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^64-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^128-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^256-1)]=1/5*6^1024-1/5[(6^512+1)(6^512-1)]=1/5*6^1024-1/5(6^1024-1)=1/5*6^1024-1/5*6^1024+1/5=0,2
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение: