1)Используем свойства степени (-1/2)(степень 5) * (x(степень 8))(степень 5)*(у(степень 9))(степень 5). (Чтобы возвести произведение в степень, возведите каждый множитель в эту степень)
2)Сократить дробь
-1/32*(x(степень 8))(степень 5)*(y(степень 9))(степень 5). (Чтобы возвести дробь в степень, нужно возвести в эту степень числитель и знаменатель.)
3) Упрощаем выражение путём умножения показателей степеней
-1/32x(степень 40) *y (степень 45). (Просто перемножаем степени - 8*5=40 и 9*5=45)
1) ответ: 1) -216m (степень 9) n (степень 9)
Объяснение
1)Возводим число -6 в третью степень. (-216)
2)При возведении степени в степень - степени перемножаются. (3*3=9, поэтому и в девятых степенях)
1) ответ: 5) -1/32x(степень 40) y (степень 45)
Объяснение:
1)Используем свойства степени (-1/2)(степень 5) * (x(степень 8))(степень 5)*(у(степень 9))(степень 5). (Чтобы возвести произведение в степень, возведите каждый множитель в эту степень)
2)Сократить дробь
-1/32*(x(степень 8))(степень 5)*(y(степень 9))(степень 5). (Чтобы возвести дробь в степень, нужно возвести в эту степень числитель и знаменатель.)
3) Упрощаем выражение путём умножения показателей степеней
-1/32x(степень 40) *y (степень 45). (Просто перемножаем степени - 8*5=40 и 9*5=45)
1) ответ: 1) -216m (степень 9) n (степень 9)
Объяснение
1)Возводим число -6 в третью степень. (-216)
2)При возведении степени в степень - степени перемножаются. (3*3=9, поэтому и в девятых степенях)
3) ответ: 2) 49x (степень 18) y (степень 20)
Объяснение: Смотреть второе.
(x+2)(3-x)=0
-x²+x+6=0
x²-x-6=0 D=26
x₁=3 x₂=-2
S=∫³₋₂(-x₂+x+6)dx=(-x³/3+x²/2+6x) |³₋₂=
-3³/3+3²/2+6*3-((-2)³/3+(-2)²/2+6*(-2))=-9+4¹/₂+18-(8/3+2-12)=
=13¹/₂-(-7¹/₃)=20⁵/₆≈20,8(3) (кв. ед.).
2) y=9-x² y=7-x y=0 s-?
9-x²=7-x
x²-x-2=0 D=9
x₁=2 x₂=-1
9-x²=0
x²=9
x₁=-3 x₂=3
7-x=0
x=7 ⇒
Обшая площадь состоит из четырёх площадей:
9-x² 7-x 9-x² 0
-3-1237
S=∫⁻¹₋₃(9-x²)dx+∫²₋₁(7-x)dx+∫³₂(9-x²)dx+∫⁷₃ (0)dx=
=(9x-x³/3) |⁻¹₋₃+(7x-x²/2) |²₋₁+(9x-x³/3) |³₂=
=(-9+1/3+27-9)+(14-2+7+1/2)+(27-9-18+8/3)=9¹/₃+19¹/₂+2²/₃=31¹/₂.