Выпишем все двузначные квадраты: 16, 25, 36, 49, 64, 81. Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649 Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.: Начинающееся на 3: 3649 на 4: 49 на 5 - таких чисел нет на 6: 649 на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7. на 8: - 81649 на 9: - нет. Итак, наибольшее: 81649.
Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649
Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.:
Начинающееся на 3: 3649
на 4: 49
на 5 - таких чисел нет
на 6: 649
на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7.
на 8: - 81649
на 9: - нет.
Итак, наибольшее: 81649.
D(f)∈(-∞;∞)
Асимптот нет,непериодическая
f(-x)=-x³+12x=-(x³-12x)
f(x)=-f(-x) нечетная
x=0 y=0
y=0 x(x²-12)=0 x=0 x=2√3 x=-2√3
(0;0);(2√3;0);(-2√3;0)-точки пересечения с осями
f`(x)=3x²-12=3(x-2)(x+2)=0
x=2 x=-2
+ _ +
(-2)(2)
возр max убыв min возр
уmax=-8+24=16
ymin=8-24=-16
f``(x)=6x=0
x=0 y=0
(0;0)-точка перегиба
- +
(0)
выпукл вверх вогнута вниз