производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
Объяснение: 1) Р=28, т.к. в четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. 2) Центр оружности, описан около прямоуг треуг лежит на середине гипотенузы ⇒ гипотенуза с= 6,5·2=13, катет а=5, значит по т. Пифагора катет b=√(13²-5²) =√144=12. Тогда периметр Р = 13+5+12=32 . Площадь S= 5·12/2=30 3) Пусть ∠А=46°, ∠С=74°⇒∠В=180°-(74°+46°)=60°. Ула треугольника вписанные, значит они равны половине дуги, на которую опираются, ⇒ дуга ВС=46·2=92°, дуга АС=60°·2=120°, дуга АВ= 74°·2= 148° 4) S=1/2·d₁d₂=60·80/2= 2400 Cторона ромба по т. Пифагора а= 50 см⇒радиус r=S : 2а= 2400 : 100=24 см
1) f(x)=7x-14, [0;4]
производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
f(-5) =-5/(-5)=1- наименьшее значение.
Объяснение: 1) Р=28, т.к. в четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. 2) Центр оружности, описан около прямоуг треуг лежит на середине гипотенузы ⇒ гипотенуза с= 6,5·2=13, катет а=5, значит по т. Пифагора катет b=√(13²-5²) =√144=12. Тогда периметр Р = 13+5+12=32 . Площадь S= 5·12/2=30 3) Пусть ∠А=46°, ∠С=74°⇒∠В=180°-(74°+46°)=60°. Ула треугольника вписанные, значит они равны половине дуги, на которую опираются, ⇒ дуга ВС=46·2=92°, дуга АС=60°·2=120°, дуга АВ= 74°·2= 148° 4) S=1/2·d₁d₂=60·80/2= 2400 Cторона ромба по т. Пифагора а= 50 см⇒радиус r=S : 2а= 2400 : 100=24 см