– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.
– подынтегральное выражение или «начинка» интеграла.
– первообразная функция.
– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .
Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Еще раз посмотрим на запись:
Посмотрим в таблицу интегралов.
Что происходит? Левые части у нас превращаются в другие функции: .
У наше определение.
Решить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Возьмем, например, табличный интеграл . Что произошло? превратился в функцию .
Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, первообразная функция с теоретической точки зрения. Достаточно осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.
Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:
Пусть х рядов было в зале , по у мест в каждом ряду всего мест х*у=80 тогда после ремонта стало (х-3) ряда , по (у+4) мест (х-3)*(у+4)=84 х*у=80 (х-3)*(у+4)=84 ху=80 ху -3у+4х-12=84 ху=80 80-3у+4х-12=84 ху=80 ⇒ х=80/у 4х-3у =16 ху=80 ⇒ х=80/у 4*(80/у) -3у =16 (320/у) -3у -16=0 домножим на у , избавимся от знаменателя 320 -3у²-16у=0 3у²+16у-320=0 d= 256+3840= 4096 √d= 64 y=(-16+64)/6= 8 мест ⇒ x=80/8 =10 рядов у=(-16-64)/6 < 0 не подходит ответ : до ремонта было 10 рядов по 8 мест
Відповідь:
Сразу разбираемся в обозначениях и терминах:
– значок интеграла.
– подынтегральная функция (пишется с буквой «ы»).
– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.
– подынтегральное выражение или «начинка» интеграла.
– первообразная функция.
– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .
Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Еще раз посмотрим на запись:
Посмотрим в таблицу интегралов.
Что происходит? Левые части у нас превращаются в другие функции: .
У наше определение.
Решить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Возьмем, например, табличный интеграл . Что произошло? превратился в функцию .
Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, первообразная функция с теоретической точки зрения. Достаточно осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.
Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:
Пояснення: