Первообразной для данной функции называется функция, производная которой равна данной функции. Например для функции у= сosx первообразной будет функция Y = sinx, так как производная sinx равна cosx. Кроме этого первообразных у функции бесконечно много и отличаются они друг от друга на постоянное число, так как производная числа равна 0. Например для той же функции у= сosx первообразной будет и Y = sinx+ 5 или в общем виде Y = sinx+С Для всех изучаемых в школе функций есть таблица первообразных. Далее если под знаком функции стоит не просто х а х умноженное на какое-то число, то в этом случае первообразная для неё умножается на число обратное данному числу. Например: у= сos3x, то первообразная будет Y = 1/3sin3x или если у= сosx/4 то Y = 4sinx/4. Для данной в примере функции ( посмотрите в задании было под знаком cos х деленное на 4 или как у вас в примере 4 деленное на х. Задание решено для х деленного на 4. В другом случае решение выходит за рамки школьной программы.) первообразная будет равна 1/3*3(-cosx/3)+4*4sinx/4 +C = -cosx/3+16sinx/4 +c Чтобы найти конкретное значение С подставляют в полученное выражение первообразной координаты точки, через которую проходит первообразная. В данном случае точки А Получаем 3 = -cosп/3 +16sinп/4 +С 3= -1/2 +16 *√2/2 +С С = 3,5+8*√2
Пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х. работая вместе, они сделали всю работу (равную 1) за 12 часов (1/(х -18) + 1/х)·12 = 112·(х + х - 18) = х² - 18х х² - 42х + 216 = 0 d = 42² - 4·216 = 900 √d = 30 х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! ) х₂ = (42 + 30) : 2 = 36 ответ: 2-я труба наполняет бассейн за 36 часов