1/3Х+1/9Х^2 + 6X=2 приводим дроби к общему знаменателю, общий знаменатель -число,которое делится на каждый знаменатель дроби в уравнении, это число 9. Делим 9 на знаменатель каждой дроби: 9:3=9, 9:9=1, 9:1=9, умножаем числители каждой дроби на полученное значение и складываем их. получаем: (3Х+Х^2+54Х)/9 = 2 57Х + Х^2 = 18 Переносим число 18 в левую часть уравнения и приравниваем к нулю, получается стандартное квадратное уравнение типа ах^2 + bx + c = 0: Х^2 + 57Х - 18 = 0 в нашем случае а=1, в=57, с= -18 для решения квадратных уравнений существуют специальные формулы. для начала нужно вычислить дискриминант этого уравнения по формуле D = в^2 - 4ас, чтобы узнать, по какой схеме искать корни уравнения и сколько их может быть в данном уравнении: D=57^2 - 4*1*(-18)=3249 + 72= 3321 по правилам, если дискриминант больше нуля, то уравнение имеет два корня, то есть два значения Х, и они вычисляются по формуле: Х1,Х2 = (-B = + - КОРЕНЬ из (В^2 - 4ас)) / 2а подставляем в эту формулу наши значения а,в,с: Х1= (-57 + КОРЕНЬ из (57^2 -4*1*(-18))) / 2*1 Х1= (-57+КОРЕНЬ из 3249+72) / 2 Х1= (-57+ 57,63) / 2 Х1 = 0,314 таким же образом подставив те же значения для Х2, только уже в числителе будет разница, а не сумма: Х2= (-57-57,63) / 2 Х2 = - 57,315
С правой части у обоих уравнений -1, следовательно их можно приравнять. x^2+3xy-8y^2=x^2-xy-4y^2 перенесём всё влево: x^2+3xy-8y^2-x^2+xy+4y^2=0 x^2 сокращается; остаётся: 3xy+xy-8y^2+4y^2=0 4xy-4y^2=0 4y можно вынести: 4y(x-y)=0 То есть 4y=0, следовательно y=0 И x-y=0, следовательно x=y теперь подставляем эти "ответы в первое или второе уравнение (неважно) Сначала вместо y будем ставить 0: x^2+3x*0-8*0^2=-1 x^2=-1 такого быть не может (когда что-то в квадрат возносим получается положительное число) Теперь вместо y будем подставлять x (x=y) x^2+3x^2-8x^2=-1 -4x^2=-1 x^2=1/4 x1=1/2 и y1=1/2 x2=-1/2 и y2=-1/2 ответ: (1/2;1/2) и (-1/2;-1/2)
приводим дроби к общему знаменателю, общий знаменатель -число,которое делится на каждый знаменатель дроби в уравнении, это число 9. Делим 9 на знаменатель каждой дроби: 9:3=9, 9:9=1, 9:1=9, умножаем числители каждой дроби на полученное значение и складываем их. получаем:
(3Х+Х^2+54Х)/9 = 2
57Х + Х^2 = 18
Переносим число 18 в левую часть уравнения и приравниваем к нулю, получается стандартное квадратное уравнение типа ах^2 + bx + c = 0:
Х^2 + 57Х - 18 = 0
в нашем случае а=1, в=57, с= -18
для решения квадратных уравнений существуют специальные формулы.
для начала нужно вычислить дискриминант этого уравнения по формуле
D = в^2 - 4ас, чтобы узнать, по какой схеме искать корни уравнения и сколько их может быть в данном уравнении:
D=57^2 - 4*1*(-18)=3249 + 72= 3321
по правилам, если дискриминант больше нуля, то уравнение имеет два корня, то есть два значения Х, и они вычисляются по формуле:
Х1,Х2 = (-B = + - КОРЕНЬ из (В^2 - 4ас)) / 2а
подставляем в эту формулу наши значения а,в,с:
Х1= (-57 + КОРЕНЬ из (57^2 -4*1*(-18))) / 2*1
Х1= (-57+КОРЕНЬ из 3249+72) / 2
Х1= (-57+ 57,63) / 2
Х1 = 0,314
таким же образом подставив те же значения для Х2, только уже в числителе будет разница, а не сумма:
Х2= (-57-57,63) / 2
Х2 = - 57,315
x^2+3xy-8y^2=x^2-xy-4y^2
перенесём всё влево:
x^2+3xy-8y^2-x^2+xy+4y^2=0
x^2 сокращается; остаётся:
3xy+xy-8y^2+4y^2=0
4xy-4y^2=0
4y можно вынести:
4y(x-y)=0
То есть 4y=0, следовательно y=0
И x-y=0, следовательно x=y
теперь подставляем эти "ответы в первое или второе уравнение (неважно)
Сначала вместо y будем ставить 0:
x^2+3x*0-8*0^2=-1
x^2=-1 такого быть не может (когда что-то в квадрат возносим получается положительное число)
Теперь вместо y будем подставлять x (x=y)
x^2+3x^2-8x^2=-1
-4x^2=-1
x^2=1/4
x1=1/2 и y1=1/2
x2=-1/2 и y2=-1/2
ответ: (1/2;1/2) и (-1/2;-1/2)