График уравнения - парабола => Искомое квадратное уравнение имеет вид: ax² + bx + c Для нахождения абцисс пересечения достаточно знать коэффициент а искомой параболы.
x₂ - x₁ = | 1 - (-2) | = 3 (расстояние между абциссами точек) Подставим это значение в уравнение постоянной параболы (y=x²): y = 3² y = 9 (на такой расстоянии от вершины находилась бы точка при B при a=1)
При коэффициенте а=1 расстояния между ординатами соседними точками с целыми абциссами (0; 1; 2; 3) равняются 1; 3; 5 (между 0² и 1² расстояние 1; между 2² и 1² расстояние 3; между 3² и 2² расстояние 5)
При коэффициенте a=2 соотношения расстояний между ординатами соседних точек с целыми абциссами остаются такими же, а сами расстояния увеличиваются в 2 раза (между 0² и 1² расстояние 2; между 2² и 1² расстояние 6; между 3² и 2² расстояние 10)
Теперь последовательно увеличиваем абциссу вершины на 1 и прибавляем к ординате вершины (-2) выведенные числа, пока она не получим ноль.
1) -2 + 1 = -1 -2 + 2 = 0 При прибавлении двух получаем ноль => абцисса 1-ой точки пересечения с осью x равна -1. Вторая абцисса пересечения лежит зеркально по отношению к абциссе параболы: | -2 - (-1) | = 1 Расстояние от вершины параболы до точек пересечения с осью x = 1 -2 - 1 = -3 (абцисса 2-ой точки пересечения с осью x)
Больше двух точек пересечения параболы с какой-либо горизонтальной прямой не бывет => ответ: -3; -1
Искомое квадратное уравнение имеет вид: ax² + bx + c
Для нахождения абцисс пересечения достаточно знать коэффициент а искомой параболы.
A(-2;-2) - вершина параболы; x₁ = -2; y₁ = -2;
B(1;16) принадлежит параболе; x₂ = 1; y₂ = 16;
x₂ - x₁ = | 1 - (-2) | = 3 (расстояние между абциссами точек)
Подставим это значение в уравнение постоянной параболы (y=x²):
y = 3²
y = 9 (на такой расстоянии от вершины находилась бы точка при B при a=1)
y₂ - y₁ = |16 - (-2) | = 18 (расстояние между ординатами точек)
18 / 9 = 2 (коэффициент a в 2 раза больше
a = 2
При коэффициенте а=1 расстояния между ординатами соседними точками с целыми абциссами (0; 1; 2; 3) равняются 1; 3; 5 (между 0² и 1² расстояние 1; между 2² и 1² расстояние 3; между 3² и 2² расстояние 5)
При коэффициенте a=2 соотношения расстояний между ординатами соседних точек с целыми абциссами остаются такими же, а сами расстояния увеличиваются в 2 раза (между 0² и 1² расстояние 2; между 2² и 1² расстояние 6; между 3² и 2² расстояние 10)
Теперь последовательно увеличиваем абциссу вершины на 1 и прибавляем к ординате вершины (-2) выведенные числа, пока она не получим ноль.
1) -2 + 1 = -1
-2 + 2 = 0
При прибавлении двух получаем ноль => абцисса 1-ой точки пересечения с осью x равна -1.
Вторая абцисса пересечения лежит зеркально по отношению к абциссе параболы:
| -2 - (-1) | = 1
Расстояние от вершины параболы до точек пересечения с осью x = 1
-2 - 1 = -3 (абцисса 2-ой точки пересечения с осью x)
Больше двух точек пересечения параболы с какой-либо горизонтальной прямой не бывет =>
ответ: -3; -1
представим 3^4=t =>t=x^logx(t) =>x^(log3(x))=x^logx(t) =>log3(x)=logx(t)
log3(x)=1/logt(x)=>log3(x)*logt(x)=1 => log3(x)*log3^4(x)=1 1/4(log3(x))^2=1
( log3(x))^2=4 log3(x)=+-2 x1=9 x2=1/9 одз х>0
2) log3(x)*log4(x)=4log4(3) log4(x^log3(x))=log4(3^4) x^log3(x)=3^4 x^log3(x)=x^(logx(3^4) log3(x)=logx(3^4) log3(x)=4logx(3) log3(x)=4/log3(x)
(log3(x)^2=4 log3(x)=+-2 log3(x)=-2 x1=3^-2=1/9 x2=3^2=9