1) E(y)=(0;-infinity) infinity-бесконечность два варианта рассуждений 1. Аналитический очевидно, что у<0, так же понятно что у обратно пропорционален х, то есть чем больше х, тем меньше у. Значит при дальнейшем увеличении х у будет уменьшаться. 2. Графический строишь график, х=0 и у=0 - асимптоты, весь график ниже оси х, все становится ясно.
2) E(y)=[0;+infinity) 1. Очевидно, что у положительный, т.к. имеется корень, 0 можем включать тк. в нем (можем подставить его вместо у и все будет видно). Ну и при увеличении х у будет стремится к бесконечности. 2. Строим график и все прекрасно видно. а корень это sqrt
Формула решения квадратного уравнения!
ax^2+bx+c=0
x1=(-b+кор.кв.( b^2-4ac))/2a
x2=(-b-кор.кв.( b^2-4ac))/2a
где:
^2- значит в квадрате!
кор.кв.( b^2-4ac) - корень квадратный из выражения (b в квадрате -4*a*c)
1)5x^2-7x+2=0
x1=(7+кор.кв(49-40))/10=(7+3)/10= 1
х2=(7-кор.кв(49-40))/10=(7-3)/10= 0,4
2)3x^2+5x-2=0
x1=(-5+кор.кв.(25-24))/6=(-5+1)/6=-4/6= -2/3
x2=(-5-кор.кв.(25-24))/6=(-5-1)/6=-6/6= -1
3)2x^2-7x+3=0
x1=(7+кор.кв.(49-24))/4=(7+5)/4=12/4= 3
x2=(7-кор.кв.(49-24))/4=(7-5)/4=2/4= 1/2
4)3x^2+2x-5=0
x1=(-2+кор.кв(4+60))/6=(-2+8)/6= 1
x2=(-2-кор.кв(4+60))/6=(-2-8)/6=-10/6= -1(2/3)
5)5x^2-3x-2=0
x1=(3+кор.кв.(9+40))/10=(3+7)/10=10/10= 1
x2=(3-кор.кв.(9+40))/10=(3-7)/10=-4/10= -0,4
infinity-бесконечность
два варианта рассуждений
1. Аналитический
очевидно, что у<0, так же понятно что у обратно пропорционален х, то есть чем больше х, тем меньше у. Значит при дальнейшем увеличении х
у будет уменьшаться.
2. Графический
строишь график, х=0 и у=0 - асимптоты, весь график ниже оси х, все становится ясно.
2) E(y)=[0;+infinity)
1. Очевидно, что у положительный, т.к. имеется корень, 0 можем включать тк. в нем (можем подставить его вместо у и все будет видно). Ну и при увеличении х у будет стремится к бесконечности.
2. Строим график и все прекрасно видно.
а корень это sqrt