#3/ 1.Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексныхчисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы/. Виды: Виды матриц: квадратная, студенчатая, нулевая, дигональная, единичная, скалярная, треугольная и другие 2. Для матрицы определены следующие алгебраические операции:сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы);умножение матрицы на элемент основного кольца или поля (то есть скаляр).
= 8х⁴ - 8х² + 2. Стандартный вид. Степень (х⁴) = 4.
б) Докажите, что при любых целых значениях x многочлен делится на 2.
Вынести общий множитель 2 за скобки;
8х⁴ - 8х² + 2 = 2(4х⁴ - 4х² + 1). Полученное выражение при любых целых значениях х делится на 2.в) Докажите, что при любых действительных значениях x многочлен не может принимать отрицательных значений.
После вынесения общего множителя 2 в скобках будет квадрат суммы, который больше 0 при любом значении
2. Для матрицы определены следующие алгебраические операции:сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы);умножение матрицы на элемент основного кольца или поля (то есть скаляр).
а) Преобразуйте выражение, чтобы получить многочлен стандартного вида. Укажите степень многочлена.
(2х² - 2)² - 4х³(х³ + х² - х - 2) + 4(х²)³ + 20х⁹/5х⁴ - 2(4х³ + 1) =
= 4х⁴ - 8х² + 4 - 4х⁶ - 4х⁵ + 4х⁴ + 8х³ + 4х⁶ + 4х⁵ - 8х³ - 2 =
= 8х⁴ - 8х² + 2. Стандартный вид. Степень (х⁴) = 4.
б) Докажите, что при любых целых значениях x многочлен делится на 2.
Вынести общий множитель 2 за скобки;
8х⁴ - 8х² + 2 = 2(4х⁴ - 4х² + 1). Полученное выражение при любых целых значениях х делится на 2.в) Докажите, что при любых действительных значениях x многочлен не может принимать отрицательных значений.
После вынесения общего множителя 2 в скобках будет квадрат суммы, который больше 0 при любом значении
2(4х⁴ - 4х² + 1) = 2(2х² + 1)².