пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км
ответ:
log3 = 2*log9 - 1
log3 = 2 * log(3^2) - log3 3
log3 = 2 * 1\2 * log3 - log3 3
log3 = log3 - log3 3
log3 (sin 3x - sin x) = log3 [(17*sin 2x) \ 3]
теперь основания логарифмов одинаковые =>
решать выражения при логарифмах (приравнять их):
sin 3x - sin x) = [(17*sin 2x) \ 3]
3*(sin 3x - sin x) = 17*sin 2x
3*[(3sin x - 4sin^3 x) - sin x] = 17*(2sin x * cos x)
3*(2sin x - 4sin^3 x) = 34*sin x * cos x > (: ) на sin x =>
6 - 12sin^2 x = 34cos x
6 - 12*(1 - cos^2 x) = 34cos x
6 - 12 + 12cos^2 x - 34cos x = 0
12cos^2 x - 34cos x - 6 = 0 > (: ) на 2 и cos x = t
6t^2 - 17t - 3 = 0
дальше легко
объяснение:
пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км
ответ:
log3 = 2*log9 - 1
log3 = 2 * log(3^2) - log3 3
log3 = 2 * 1\2 * log3 - log3 3
log3 = log3 - log3 3
log3 (sin 3x - sin x) = log3 [(17*sin 2x) \ 3]
теперь основания логарифмов одинаковые =>
решать выражения при логарифмах (приравнять их):
sin 3x - sin x) = [(17*sin 2x) \ 3]
3*(sin 3x - sin x) = 17*sin 2x
3*[(3sin x - 4sin^3 x) - sin x] = 17*(2sin x * cos x)
3*(2sin x - 4sin^3 x) = 34*sin x * cos x > (: ) на sin x =>
6 - 12sin^2 x = 34cos x
6 - 12*(1 - cos^2 x) = 34cos x
6 - 12 + 12cos^2 x - 34cos x = 0
12cos^2 x - 34cos x - 6 = 0 > (: ) на 2 и cos x = t
6t^2 - 17t - 3 = 0
дальше легко
объяснение: