А) Пусть O – центр окружности. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла. АО – биссектриса угла BAC. AOD – прямоугольный и равнобедренный треугольник, его угол OAD равен 45°. Следовательно, угол BAC равен 90°. Б) Пусть BF = x. Согласно теореме о равенстве отрезков касательных, проведённых к окружности из одной точки, AE = AD = 5, CF = CD = 15 и BE = BF. Согласно теореме Пифагора, BC² = AC² + AB². (15 + x)² = 20² + (5 + x)². x = 10. Следовательно, BC = 25. sin ∠ABC = AC/BC = 20/25 = 4/5. S △BEF = ½ BE * BF sin ∠ABC = ½ * 10 * 10 * 4/5 = 40. ответ: 40.
Б) Пусть BF = x. Согласно теореме о равенстве отрезков касательных, проведённых к окружности из одной точки, AE = AD = 5, CF = CD = 15 и BE = BF. Согласно теореме Пифагора, BC² = AC² + AB².
(15 + x)² = 20² + (5 + x)².
x = 10.
Следовательно, BC = 25.
sin ∠ABC = AC/BC = 20/25 = 4/5.
S △BEF = ½ BE * BF sin ∠ABC = ½ * 10 * 10 * 4/5 = 40.
ответ: 40.
y 3.2| 4 | 2 | 2.4|
y |5
|4
|3
|2
|1
| 1 2 3 4 5
| x
-5 -4 -3 -2 -1 |-1
|-2
|-3
|-4
|-5