* * * x²-x +6 =(x-x₁)(x-x₂) , где x₁= -2 и x₂=3 корни квадратного трехчлена x²-x +6 * * *
Если многочлен имеет целые корни то они делители свободного члена ( в данном случае 6 : делители {±1 ; ±2 ; ±3 ; ±6} .Проверка показывает, что x= -2 и x =3 корни.Значит многочлен делится на (x-(-2)(x-3) =(x+2)(x-3) = x²-x -6. По столбикам : x^5-4x^4+14x^2-17x+6 | x² - x -6 | | x³ -3x²+3x -1 Или по Схема Горнера.
3x^2-2=0 3х²=3 D=81+88=169
3x^2=2 х²=1 x1=(-9+13)/2=2
x^2=2/3 x=1 x2=(-9-13)/2=-11
x=√2/3
5)5х²+9х+4=0 6)7х²-11х-6=0 7)х²- 12х+32=0
D=81-80=1 D=121+168=289 d=144-128=16
x1=(-9+1)/2=-4 x1=11+17)/14=2 x1=12+4)/2=8
x2=(-9-1)/2=-5 x2=11-17)/14=-3/7 x2=12-4)/2=4
8)36х²-12+1=0 9) 3х²+х-2=0
d=144-144=0 d=1+24=25
x=12/72=1/6 x1=-1+5)/6=2/3
x2=-1-5)/6=-1
x^5-4x^4+14x^2-17x+6 =x^5-x^4 -3x^4 +3x³ -3x³ +3x² +11x² -11x - 6x +6 =
x^4 (x-1) -3x³(x-1) -3x²(x-1) +11x(x-1) -6(x-1) =
(x-1)*(x^4 -3x³ -3x² +11x -6) аналогично x=1 корень для многочлена x^4 -3x³ -3x² +11x -6
* * * 1^4 -3*1³ -3*1² +11*1 -6 = 1 -3 -3 +11-6 =0 * * *
x^4 -3x³ -3x² +11x -6 =x^4 -x³ -2x³ +2x² -5x² +5x +6x-6 =x³(x-1)-2x²(x-1) -5x(x-1)+6(x-1)=
(x-1)(x³ -2x²-5x +6) опять x=1 корень многочлена x³ -2x²-5x +6.
x³ -2x²-5x +6 = x³ -x² -x² +x -6x+6 =x²(x-1) -x(x-1)- 6(x-1) =(x-1)(x² -x+6).
получилось x=1 многократный (3-кратный) корень исходного многочлена.
x^5-4x^4+14x^2-17x+6 =(x-1)³(x²-x -6) =(x-1)³(x +2)(x-3).
* * * x²-x +6 =(x-x₁)(x-x₂) , где x₁= -2 и x₂=3 корни квадратного трехчлена x²-x +6 * * *
Если многочлен имеет целые корни то они делители свободного члена ( в данном случае 6 : делители {±1 ; ±2 ; ±3 ; ±6} .Проверка показывает, что x= -2 и x =3 корни.Значит многочлен делится на (x-(-2)(x-3) =(x+2)(x-3) = x²-x -6.
По столбикам :
x^5-4x^4+14x^2-17x+6 | x² - x -6
|
| x³ -3x²+3x -1
Или по Схема Горнера.