В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
bayramovameyra
bayramovameyra
21.04.2020 18:35 •  Алгебра

Розв’яжіть у цілих числах рівняння 2xy+2x-3y-4=0

Показать ответ
Ответ:
Lolycomp40
Lolycomp40
20.07.2021 14:01
1) 7tgx -10Ctgx +9 =0 |* tgx
     7tg^2x -10 +9tgx = 0
tgx = y
7y^2 +9y -10 = 0
y1 = 10/14 = 5/7
у2 = -2
а) у = 5/7
tgx = 5/7
x = arctg5/7 + \pik, k ЄZ
б) у = -2
tgx = -2
x = -arctg2 +\pik, k ЄZ
2) 10SinxCosx -14Cos^2x +2*1 = 0
10SinxCosx -14Cos^2x +2(Sin^2x+Cos^2x) = 0
10SinxCosx -14Cos^2x +2Sin^2x +2Cos^2x = 0
10SinxCosx -12Cos^2x +2Sin^2x = 0 :Cos^2x
10tgx -12 +2tg^2x= 0
tgx = y
2y^2 +10y -12=0
y^2 + 5y - 6 = 0
По т. Виета у1 = - 6 и  у2 = 1
а) у = - 6
tgx = -6
x = -arctg6+\pik, kЄZ 
б)у = 1
tgx = 1
x = \pi /4\pi k, k ЄZ
3) 9(Cos^2x - Sin^2x) -4Cos^2x = 22SinxCosx + 9*1
9Cos^2x - 9Sin^2x -4Cos^2x -22SinxCosx -9(Sin^2x+Cos^2x) = 0
9Cos^2x - 9Sin^2x -4Cos^2x -22SinxCosx -9Sin^2x - 9Cos^2x = 0
-18Sin^2x -4Cos^2x -22SinxCosx = 0
9Sin^2x +2Cos^2x +11SinxCosx = 0|:Cos^2x
9tg^2x +2 +11tgx = 0
tgx = y
9y^2 +11y +2 = 0
y1=-1,  y2 = -2/9
a) y = -1
tgx = -1
x = -\pi /4\pi k, kЄZ
б) у = -2/9
tgx = -2/9
x = -arctg(2/9) + \pi k, k ЄZ
 

-
0,0(0 оценок)
Ответ:
05061972
05061972
22.07.2022 07:51
Результат зависит от того какие  шары извлечены из первой урны.
Имеем 4 случая ( или гипотезы)
Н₁-извлекли  3 белых и 1 черный;
Н₂- извлекли  2 белых и 2 черных;
Н₃- извлекли 1 белый и 3 черных;
Н₄-извлекли 0 белых и 4 черных.

Считаем вероятность каждой гипотезы
р(Н₁)=С³₃·С¹₅/С⁴₈=5/70;
р(Н₂)=С²₃·С²₅/С⁴₈=30/70;
р(Н₁)=С¹₃·С³₅/С⁴₈=30/70;
р(Н₁)=С⁰₃·С⁴₅/С⁴₈=5/70.
Считаем по формуле
Сⁿ(m)=n!/((n-m)!m!).

А- событие, означающее, что из второй урны вынут белый шар.
A/H₁- cобытие, означающее, что из второй  урны вынут белый шар при условии, что состоялось событие H₁, т.е из первой урны извлекли 3 белых и 1 черный. Тогда в второй урне стало 9 белых и 7 черных, всего 16 шаров. Вероятность белый шар из 16 шаров, среди которых 9 белых по формуле классической вероятности равна 9/16.
р(А/H₁)=9/16;
р(А/H₂)=8/16;
р(А/H₃)=7/16;
р(А/H₄)=6/16.

По формуле полной вероятности
р(А)=р(Н₁)·р(А/Н₁+р(Н₂)·р(А/Н₂)+р(Н₃)·р(А/Н₃)+р(Н₄)·р(А/Н₄)=
=(5/70)·(9/16)+(30/70)·(8/16)+(30/70)·(7/16)+(5/70)·(6/16)=
=(45+240+210+30)/1120=525/1120=0,46875.
О т в е т. р≈0,47.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота