288 | 2 528 | 2
144 | 2 264 | 2
72 | 2 132 | 2
36 | 2 66 | 2
18 | 2 33 | 3
9 | 3 11 | 11
3 | 3 528 = 2⁴ · 3 · 11
1
288 = 2⁵ · 3²
НОД = 2⁴ · 3 = 48 - наибольший общий делитель
288 : 48 = 6 528 : 48 = 11
ответ: НОД (288 и 528) = 48.
б)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится изa*(a - 3) = 2*a - 6вa*(a - 3) + -2*a + 6 = 0Раскроем выражение в уравненииa*(a - 3) - 2*a + 6Получаем квадратное уравнение 2 6 + a - 3*a - 2*a = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D a1, a2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 1b = -5c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1Т.к. D > 0, то уравнение имеет два корня.a1 = (-b + sqrt(D)) / (2*a)a2 = (-b - sqrt(D)) / (2*a)a1 = 3a2 = 2
288 | 2 528 | 2
144 | 2 264 | 2
72 | 2 132 | 2
36 | 2 66 | 2
18 | 2 33 | 3
9 | 3 11 | 11
3 | 3 528 = 2⁴ · 3 · 11
1
288 = 2⁵ · 3²
НОД = 2⁴ · 3 = 48 - наибольший общий делитель
288 : 48 = 6 528 : 48 = 11
ответ: НОД (288 и 528) = 48.