В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Розв'яжи підстановки

m + 5n = 7

3m - 2n = 55

Розв'яжи додавання

4x - 5y = 19 3c - 4d = 11

2x + 5y =13 4c + 6d = 26

Розв'яжи графічний б

x + y = 4

3x + 3y = 12

Показать ответ
Ответ:
iraermila
iraermila
10.07.2020 00:37
1)2cos²x+5sinx-4=0
2-2siin²x+5sinx-4=0
2sin²x-5sinx+2=0
sinx=a
2a²-5a+2=0
D=25-16=9
a1=(5-3)/4=1/2⇒sinx=1/2⇒x=(-1)^n *π/6+πn
a2=(5+3)/4=2⇒sinx=2∈[-1;1]
x=π/6 наим
2tgπ/6-1=2*√3/3 -1=(2√3-3)/3
2)cos(x+π/6)≤-1/2
2π/3+2πn≤x+π/6≤4π/3+2πn
2π/3-π/6+2πn≤x≤4π/3-π/6+2πn
π/2+2πn≤x≤7π/6+2πn
x∈[π/2+2πn;7π/6+2πn]
3)2sin^2x+3sinxcosx+cos^2 x=0 /cos²x≠0
2tg²x+3tgx+1=0
tgx=a
2a²+3a+1=0
D=9-8=1
a1=(-3-1)/4=-1⇒tgx=1⇒x=π/4
a2=(-3+1)/4=-1/2⇒tgx=-1/2⇒x=-arctg0,5+πn
4)y=√(2x+6 -x  [-3;∞)
y`=2/2√(2x+6  -1=1/√(2x+6) -1=(1-√(2x+6)/√(2x+6)=0
√(2x+6)=1
2x+6=1
2x=-5
x=2,5∈ [-3;∞)
y(2,5)=√11 -2,5≈0,8-наим
y(0)=√6≈2,4наиб
0,0(0 оценок)
Ответ:
111759
111759
06.05.2023 02:58

Подобно звёздам на небосводе сияют в числовом космосе простые числа. Не одну тысячу лет к ним приковано внимание математиков – их вновь и вновь ищут, исследуют, находят им применение. Евклид и Эратосфен, Эйлер и Гаусс, Рамануджан и Харди, Чебышёв и Виноградов... Этот перечень выдающихся учёных занимавшихся простыми числами и задачами с ними связанными можно продолжать и продолжать.

На страницах нашего сайта уже шла речь о бесконечности ряда простых чисел и некоторых смежных вопросах. При этом нас интересовали все простые числа сразу. Иногда же интересно рассмотреть совокупности из двух, трёх, четырёх или более простых чисел. Именно о таких совокупностях – созвездиях простых чисел – пойдёт речь далее. 

Простые числа-близнецы

Два простых числа, которые отличаются на 2, как

5  и  7,

11  и  13,

17  и  19,

получили образное название близнецы (эти числа называют ещё парными простыми числами). Любопытно, что в натуральном ряду имеется даже тройня простых чисел – это числа

3,  5,  7.

Ну а сколько всего существует близнецов – современной математике неизвестно.

Числа-близнецы из заданной таблицы чисел можно просеивать, слегка подправив решето Эратосфена. Если для каждого вычеркнутого Эратосфена числа n вычеркнуть так же число n – 2, то в таблице останутся лишь такие числа р, для которых число р + 2 тоже простое. В пределах первой сотни близнецы – это следующие пары чисел:

3  и  5,

5  и  7,

11  и  13,

17  и  19,

29  и  31,

41  и  43,

59  и  61,

71  и  73.

С парами близнецов в пределах 10000 можно познакомиться на страницах нашего сайта в Таблице простых и парных простых чисел, не превосходящих 10000, где они выделены красным цветом.

Вот лишь некоторые свойства этих чисел, которых лежат на самой поверхности океана простых чисел:

все пары простых близнецов, кроме 3 и 5, имеют вид 6n ± 1;при делении на 30 все пары близнецов, кроме первых двух, дают следующие пары остатков:

11  и  13,

17  и  19,

29  и  1;

по мере удаления от нуля близнецов становится всё меньше и меньше. Так, в пределах первой сотни натуральных чисел существуют восемь пар близнецов, а в пределах пяти сотен с 9501 по 10000 – шесть.

Предполагается, что пар простых чисел-близнецов бесконечно много, но это не доказано. Исследования, проводимые в "глубоком числовом космосе", продолжают выявлять эти замечательные и загадочные пары. На данный момент рекордсменами считаются близнецы

3756801695685 · 2666669 ± 1,

которые были обнаружены 24 декабря 2011 года в рамках реализации проекта PrimeGrid. Для записи каждого из этих чисел понадобиться 200700 цифр. 

 

Простые числа-триплеты

Это тройка различных простых чисел, разность между наибольшим и наименьшим из которых минимальна. Наименьшими простыми числами, отвечающими заданному условию, являются –

2, 3, 5  и  3, 5, 7.

Данная пара триплетов исключительна, так как во всех остальных случаях разность между первым и третьим членом равна шести. Обобщённо: последовательность простых чисел

p, p+2, p+6  или  p, p+4, p+6

называется триплетом. 

Простые числа-триплеты в пределах первой сотни:

  5,  7, 11;

  7, 11, 13;

11, 13, 17;

13, 17, 19;

17, 19, 23;

37, 41, 43;

41, 43, 47;

67, 71, 73.


 


 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота