первое число дает остаток 1 при делении на 4 значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1 число 1 при делении на 4 дает остаток 1 итого куб первого числа при делении на 4 даст остаток 1
второе число дает остаток 3 при делении на 4 значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27 число 27 при делении на 4 дает остаток 3
сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4, так как 4 при делении на 4 дает остаток 0, то сумма кубов этих чисел кратна 4 ---------------------------------- второй
так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число аналогично второе можно записать в виде 4k+3, где k - некоторое целое число
сумма кубов этих чисел
а значит сумма кубов делится нацело на 4. Доказано
b₃=b₁*q²
b₄=b₁*q³
{b₁*q²+b₁*q³=36
{b₁*q+b₁*q²=18
{b₁(q²+q³)=36
{b₁(q+q²)=18
{b₁= 36
q²+q³
{b₁= 18
q+q²
36 = 18
q²+q³ q+q²
36 = 2*18
q²+q³ 2(q+q²)
q²+q³=2(q+q²)
q²+q³=2q+2q²
q³+q²-2q²-2q=0
q³-q²-2q=0
q(q²-q-2)=0
q=0 - не подходит
q²-q-2=0
D=1+8=9
q₁=1-3=-1
2
q₂=1+3=2
2
При q=-1 b₁= 18
-1+(-1)²
b₁ = 18
0
q=-1 - не подходит
При q=2 b₁= 18
2+2²
b₁= 18
6
b₁=3
b₅=b₁*q⁴
b₅=3*2⁴
b₅=48
ответ: 48.
первое число дает остаток 1 при делении на 4
значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1
число 1 при делении на 4 дает остаток 1
итого куб первого числа при делении на 4 даст остаток 1
второе число дает остаток 3 при делении на 4
значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27
число 27 при делении на 4 дает остаток 3
сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4,
так как 4 при делении на 4 дает остаток 0, то
сумма кубов этих чисел кратна 4
----------------------------------
второй
так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число
аналогично второе можно записать в виде 4k+3, где k - некоторое целое число
сумма кубов этих чисел
а значит сумма кубов делится нацело на 4. Доказано