у = х² - 4х + 3
а) Ограничений нет, D(y) = (-беск; +беск).
b) у = х² - 4х + 3
х² - 4х + 3 = 0
(х - 1)(х - 3) = 0 (по теореме Виета)
Произведение равно нулю, если хотя бы один из множителей равен нулю => либо (х-1), либо (х-3) равно нулю => нули функции: 1 и 3 (это и есть ответ).
с) y = x² - 4x + 3
y' = 2x - 4 - уравнение линейное => у функции есть толь один экстремум
y'' = 2 => у функции есть только минимум, который нам и нужен
2х - 4 = 0
2х = 4
х = 2
у(2) = 2² - 4*2 + 3 = 4 - 8 + 3 = -1
ответ: -1.
Объяс№1.
Прямую у=3х проведём через её две точки (0;0), (1;3).
Параболу у=х² построим по 5ти точкам, при этому (0;0) - вершина параболы. (-2;4), (-1;1), (1;1), (2;4).
По графикам видно, что общие точки (0;0), (3;9). Проверим это.
Точка (0;0) точно принадлежит обеим графикам, это уже считали.
9=3·3 и 9=3², поэтому точка (3;9) тоже является решением.
ответ: (0;0) и (3;9).
№2.
x₁ = 5-1 = 4
x₂ = 5-4 = 1
ответ: (1;4) и (4;1).
№3.
Решим методом подстановки.
x² = 5+y₁ = 5-5 = 0
x₁ = 0
x² = 5+y₂ = 5+4 = 3²
x₂₁ = -3
x₂₂ = 3
ответ: (0;-5), (-3;4) и (3;4).
у = х² - 4х + 3
а) Ограничений нет, D(y) = (-беск; +беск).
b) у = х² - 4х + 3
х² - 4х + 3 = 0
(х - 1)(х - 3) = 0 (по теореме Виета)
Произведение равно нулю, если хотя бы один из множителей равен нулю => либо (х-1), либо (х-3) равно нулю => нули функции: 1 и 3 (это и есть ответ).
с) y = x² - 4x + 3
y' = 2x - 4 - уравнение линейное => у функции есть толь один экстремум
y'' = 2 => у функции есть только минимум, который нам и нужен
2х - 4 = 0
2х = 4
х = 2
у(2) = 2² - 4*2 + 3 = 4 - 8 + 3 = -1
ответ: -1.
Объяс№1.
Прямую у=3х проведём через её две точки (0;0), (1;3).
Параболу у=х² построим по 5ти точкам, при этому (0;0) - вершина параболы. (-2;4), (-1;1), (1;1), (2;4).
По графикам видно, что общие точки (0;0), (3;9). Проверим это.
Точка (0;0) точно принадлежит обеим графикам, это уже считали.
9=3·3 и 9=3², поэтому точка (3;9) тоже является решением.
ответ: (0;0) и (3;9).
№2.
x₁ = 5-1 = 4
x₂ = 5-4 = 1
ответ: (1;4) и (4;1).
№3.
Решим методом подстановки.
x² = 5+y₁ = 5-5 = 0
x₁ = 0
x² = 5+y₂ = 5+4 = 3²
x₂₁ = -3
x₂₂ = 3
ответ: (0;-5), (-3;4) и (3;4).