Поэтому указать промежуток значительно проще чем его решить. Вот смотри само (х²+1) есть уравнение где всегда больше или равно нулю, но так как область определения х≠0 (то есть в знаменателе стоит х, если вместо него подставить нуль, то получиться, что мы делим на нуль, что категорично нельзя делать, на нуль нельзя делить). Выходит, что х принимает любое значение как отрицательное, так и положительное, конечно кроме нуля. Теперь допускаем: 1) Рассмотрим первое слагаемое: мы сказали что (х²+1)≥0 при любом х, тогда пусть х (то что в знаменателе) будет положительное число. Положительное делим на положительное = положительное. рассмотрим второе слагаемое: положительное делим на положительное = положительное. В итоге, положительное + положительное = положительное, а у нас равно -2,5, то есть отрицательное. Значит при х>0 уравнение не выходит.
2) Рассмотрим первое слагаемое: также числитель ≥0, ну а х теперь возьмем <0, то есть отрицательное. положительное делим на отрицательное = отрицательное. Рассмотрим второе слагаемое: отрицательное делим на положительное = отрицательное. Имеем отрицательное минус отрицательное = отрицательное то есть нашему -2,5.
Выходит что лишь в промежутке (-бескон; 0) (где нуль исключаем ) находиться решение нашего уравнения. Вот так
Обозначим скорость катера -- х км\ч, скорость течения реки---у км\ч. По течению реки скорость катера будет ( х+у) , против течения ---(х-у) , а в стоячей воде-х. Составим систему согласно условия:
{4(x+y)+3x=148 {5(x-y)-2x=50
{7x+4y=148 {3x-5y=50
Решим систему сложения. Первое уравнение системы умножим на 5, а второе -- на 4 .
35x+20y=740 + {12x-20y=200
47x=940
x=20 скорость катера
Подставим значение х в любое уравнение системы и найдём у:( например , в первое)
Вот смотри само (х²+1) есть уравнение где всегда больше или равно нулю, но так как область определения х≠0 (то есть в знаменателе стоит х, если вместо него подставить нуль, то получиться, что мы делим на нуль, что категорично нельзя делать, на нуль нельзя делить).
Выходит, что х принимает любое значение как отрицательное, так и положительное, конечно кроме нуля.
Теперь допускаем:
1) Рассмотрим первое слагаемое:
мы сказали что (х²+1)≥0 при любом х, тогда пусть х (то что в знаменателе) будет положительное число. Положительное делим на положительное = положительное.
рассмотрим второе слагаемое: положительное делим на положительное = положительное.
В итоге, положительное + положительное = положительное, а у нас равно -2,5, то есть отрицательное.
Значит при х>0 уравнение не выходит.
2) Рассмотрим первое слагаемое:
также числитель ≥0, ну а х теперь возьмем <0, то есть отрицательное.
положительное делим на отрицательное = отрицательное.
Рассмотрим второе слагаемое:
отрицательное делим на положительное = отрицательное.
Имеем отрицательное минус отрицательное = отрицательное то есть нашему -2,5.
Выходит что лишь в промежутке (-бескон; 0) (где нуль исключаем ) находиться решение нашего уравнения.
Вот так
Объяснение:
Обозначим скорость катера -- х км\ч, скорость течения реки---у км\ч. По течению реки скорость катера будет ( х+у) , против течения ---(х-у) , а в стоячей воде-х. Составим систему согласно условия:
{4(x+y)+3x=148 {5(x-y)-2x=50
{7x+4y=148 {3x-5y=50
Решим систему сложения. Первое уравнение системы умножим на 5, а второе -- на 4 .
35x+20y=740 + {12x-20y=200
47x=940
x=20 скорость катера
Подставим значение х в любое уравнение системы и найдём у:( например , в первое)
7·20+4у=148
140+4у=148
4у=148-140
4у=8
у=2 скорость течения реки
ответ: 20 км\ч ; 2 км\ч