В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Акерке2006
Акерке2006
12.10.2021 11:30 •  Алгебра

Розвязть уравнения методом замени

Показать ответ
Ответ:
chiglakova83
chiglakova83
28.04.2023 06:00

Решить уравнения методом замены . С замены приводим уравнение к квадратному относительно новой переменной  t , которое решаем либо с дискриминанта, либо с теоремы Виета . Затем возвращаемся к старой переменной .  

\bf 1)\ \ 3x-5-2\sqrt{3x-5}=0\ \ ,\ \ \ ODZ:\ 3x-5\geq 0\ ,\ x\geq \dfrac{5}{3}Zamena:\ t=\sqrt{3x-5}\geq 0\ \ ,\ \ \ t^2-2t=0\ \ ,\ \ t\, (t-2)=0\ \ ,a)\ \ t_1=0\ \ \Rightarrow \ \ \ \sqrt{3x-5}=0\ \ ,\ \ 3x-5=0\ \ ,\ \ x=\dfrac{5}{3}\ \ ,\ \ x_1=1\dfrac{2}{3}b)\ \ t_2=2\ \ ,\ \ \sqrt{3x-5}=2\ \ ,\ \ 3x-5=4\ \ ,\ \ 3x=9\ \ ,\ \ x_2=3Otvet:\ x_1=1\dfrac{2}{3}\ ,\ x_2=3\ .

\bf 2)\ \ (x^2-6x)^2-2(x-3)^2=81(x^2-6x)^2-2\, (x^2-6x+9)=81(x^2-6x)^2-2\, (x^2-6x)-18=81Zamena:\ t=x^2-6x\ \ ,\ \ t^2-2t-99=0\ \ ,D/4=(b/2)^2-ac=1+99=100\ ,\ t_1=1-10=-9\ ,\ t_2=1+9=10\ ,a)\ \ x^2-6x=-9\ \ ,\ \ x^2-6x+9=0\ \ ,\ \ (x-3)^2=0\ \ ,\ \ x-3=0\ ,\ x=3b)\ \ x^2-6x=10\ \ ,\ \ x^2-6x-10=0\ \ ,\ \ (x-3)^2-1=0\ \ ,(x-3-1)(x-3+1)=0\ \ ,\ \ (x-4)(x-2)=0\ \ ,\ \ x=2\ ,\ x=4Otvet:\ x_1=2\ ,\ x_2=3\ ,\ x_3=4\ .

\bf 3)\ \ (2x^2+3x-1)^2-10x^2-15x+9=0(2x^2+3x-1)^2-5(2x^2+3x)+9=0(2x^2+3x)^2-2\, (2x^2+3x)+1-5\, (2x^2+3x)+9=0(2x^2+3x)^2-7\, (2x^2+3x)+10=0Zamtna:\ t=2x^2+3x\ \ ,\ \ t^2-7t+10=0\ \ ,t_1=2\ ,\ t_2=5\ \ \ (teorema\ Vieta)a)\ \ 2x^2+3x=2\ \ ,\ \ 2x^2+3x-2=0\ \ ,D=b^2-4ac=3^2+4\cdot 2\cdot 2=25\ \ ,x_1=\dfrac{-3-5}{4}=-2\ \ ,\ \ x_2=\dfrac{-3+5}{4}=0,5b)\ \ 2x^2+3x=5\ \ ,\ \ 2x^2+3x-5=0\ \ ,\ \ D=3^2+4\cdot 2\cdot 5=49\ ,

\bf x_3=\dfrac{-3-7}{4}=-2,5\ \ ,\ \ x_4=\dfrac{-3+7}{4}=1Otvet:\ x_1=-2\ ,\ x_2=0,5\ ,\ x_3=-2,5\ ,\ x_4=1\ .  

\displaystyle \bf 4)\ \ \frac{16}{(x+6)(x-1)}-\frac{20}{(x+2)(x+3)}=1\ \ ,\ \ ODZ:\ x\ne -6,\ 1,-2,-3frac{16(x^2+5x+6)-20(x^2+5x-6)}{(x^2+5x-6)\ ,(x^2+5x+6)}=116(x^2+5x+6)-20(x^2+5x-6)=(x^2+5x-6)(x^2+5x+6)Zamena:\ t=x^2+5x\ \ ,\ \ 16(t+6)-20(t-6)=(t-6)(t+6)\ \ ,16t+96-20t+120=t^2-36\ \ ,\ \ \ 216-4t=t^2-36\ \ ,t^2+4t-252=0\ \ ,\ \ D/4=2^2+252=256=16^2\ ,t_1=-2-16=-18\ ,\ t_2=-2+16=14a)\ \ x^2+5x=-18\ \ ,\ \ x^2+5x+18=0\ \ ,

\bf D=5^2-4\cdot 18=-47 < 0\ \ \Rightarrow \ \ x\in \varnothing    

Уравнение не имеет действительных корней, т.к. D<0 .

\bf b)\ \ x^2+5x=14\ \ ,\ \ x^2+5x-14=0\ ,x_1=-7\ ,\ x_2=2\ \ \ (teorema\ Vieta)Otvet:\ x_1=-7\ ,\ x_2=2\ .    

\bf 5)\ \ (x-1)(x-7)(x-4)(x+2)=40Big((x-1)(x-4)\Big)\Big((x-7)(x+2)\Big)=40(x^2-5x+4)(x^2-5x-14)=40Zamena:\ t=x^2-5x\ \ ,\ \ (t+4)(t-14)=40\ \ ,t^2-10t-56=40\ \ ,\ \ t^2-10t-96=0\ \ ,\ \ D/4=5^2+96=121=11^2\ ,t_1=5-11=-6\ ,\ \ \ t_2=5+11=16a)\ \ x^2-5x=-6\ ,\ \ x^2-5x+6=0\ \ ,\ \ x_1=2\ ,\ x_2=3\ \ (teorema\ Vieta)b)\ \ x^2-5x=16\ \ ,\ \ x^2-5x-16=0\ \ ,\ \ D=5^2+4\cdot 16=89\ ,x_3=\dfrac{5-\sqrt{89}}{2}\ \ ,\ \ \ x_4=\dfrac{5+\sqrt{89}}{2}

\bf Otvet:\ x_1=2\ ,\ x_2=3\ ,\ x_3=\dfrac{5-\sqrt{89}}{2}\ \ ,\ \ \ x_4=\dfrac{5+\sqrt{89}}{2}\ .    

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота