И квадрат, и модуль числа не могут быть отрицательными. x²=-1 левая часть уравнения - квадрат числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. квадрат числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
|x|=-5 левая часть уравнения - модуль числа х, правая часть - число " -5", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
x⁶+1=0 x⁶=-1 левая часть уравнения - шестая (чётная) степень числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. чётная степень числа не может быть отрицательной, делаем вывод: уравнение не имеет корней.
|x|+10=0 |x|=-10 левая часть уравнения - модуль числа х, правая часть - число " -10", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
сумма двух неотрицательных выражений равняется 0, если каждое из выражений равно 0, значит данное уравнение равносильно системе уравнений
которая очевидно не имеет корней (уравнения имеют разные корни) а значит и исходное уравнение не имеет корней ----------------------------------- иначе в левой части возрастающая функция как сумма двух возрастающих (функция корня и суперпозиция возрастающих функций корня и линейной) ОДЗ функции задающей левую часть
а значит
а значит данное уравнение не может иметь корней (левая часть заведомо больше правой) ------------- иначе
подносим обе части к квадрату
решений нет(проверка не нужна так как не нашли корней) ответ: данное уравнение корней не имеет
x²=-1
левая часть уравнения - квадрат числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. квадрат числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
|x|=-5
левая часть уравнения - модуль числа х, правая часть - число " -5", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
x⁶+1=0
x⁶=-1
левая часть уравнения - шестая (чётная) степень числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. чётная степень числа не может быть отрицательной, делаем вывод: уравнение не имеет корней.
|x|+10=0
|x|=-10
левая часть уравнения - модуль числа х, правая часть - число " -10", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
(при отрицательном А не имеет смысла)
причем <=>
сумма двух неотрицательных выражений равняется 0, если каждое из выражений равно 0, значит данное уравнение равносильно системе уравнений
которая очевидно не имеет корней (уравнения имеют разные корни)
а значит и исходное уравнение не имеет корней
-----------------------------------
иначе
в левой части возрастающая функция как сумма двух возрастающих (функция корня и суперпозиция возрастающих функций корня и линейной)
ОДЗ функции задающей левую часть
а значит
а значит данное уравнение не может иметь корней (левая часть заведомо больше правой)
-------------
иначе
подносим обе части к квадрату
решений нет(проверка не нужна так как не нашли корней)
ответ: данное уравнение корней не имеет