Обозначим сумму вклада через х, тогда по истечении срока вклада на счету стало [сумма вклада] + [проценты] = 100% от х + 104 1/6% от х = 204 1/6% от х. Избавимся от процентов:
Пусть вклад находился под ставкой 5% k месяцев, тогда по истечении этих месяцев сумма вклада стала равна .
Продолжая подобные рассуждения, получаем итоговую сумму вклада:
Продолжаем:
Из первого k=1, l=1 (так как все степени - натуральные положительные числа), дальше получаем m=3, n=2.
1. Выполним сложение дробей (3y + 9)/(3y - 1) и (2y - 13)/(2y + 5) и из полученного уравнения найдем значение переменной у, при условии, что сумма дробей равна 2:
Пусть вклад находился под ставкой 5% k месяцев, тогда по истечении этих месяцев сумма вклада стала равна .
Продолжая подобные рассуждения, получаем итоговую сумму вклада:
Продолжаем:
Из первого k=1, l=1 (так как все степени - натуральные положительные числа), дальше получаем m=3, n=2.
Срок хранения вклада: 1 + 1 + 3 + 2 = 7 месяцев.
1. Выполним сложение дробей (3y + 9)/(3y - 1) и (2y - 13)/(2y + 5) и из полученного уравнения найдем значение переменной у, при условии, что сумма дробей равна 2:
(3y + 9)/(3y - 1) + (2y - 13)/(2y + 5) = 2;
Приведем к общему знаменателю (3y - 1)(2y + 5):
(3y + 9)/(3y - 1) * (3y - 1)(2y + 5)/(3y - 1)(2y + 5) + (2y - 13)/(2y + 5) * (3y - 1)(2y + 5)/(3y - 1)(2y + 5) - 2 * (3y - 1)(2y + 5)/(3y - 1)(2y + 5) = 0;
Дробь равна нулю, если числитель равен нулю:
(3y + 9)(2y + 5)+ (2y - 13)(3y - 1) - 2 * (3y - 1)(2y + 5) = 0;
6y² + 15y + 18y + 45 + 6y² - 2y - 39y + 13 - 2(6y² + 15y - 2y - 5) = 0;
6y² + 15y + 18y + 45 + 6y² - 2y - 39y + 13 - 12y² - 30y + 4y + 10 = 0;
- 34y + 68 = 0;
- 34y = - 68;
y = 2.
Объяснение:
сумма дробей равна 2,если у=2