Пусть d - разность этой прогрессии, тогда a_1=a_3-2d=21-2d Вспомним основные формулы, связанные с арифметической прогрессией.
a_n=a_1+(n-1)d; S_n=(1/2)(a_1+a_n)·n=(1/2)(2a_1+(n-1)d)·n В частности, S_4=(1/2)(2a_1+3d)·4=2(42-d); 18=42-d; d=24; a_1=21-2d= - 27. Подставим в формулу для S_n найденные числа: 300=S_n=(1/2)(-54+24(n-1))n; 300= - 27n+12n^2-12n; 12n^2-39n-300=0; 4n^2-13n-100=0; D=1769. Дискриминант не является квадратом целого числа, поэтому с сожалением приходится признать, что не самая простая работа ни к чему не привела. Возможно, у Вас неправильно указана S_n
1. преобразуйте выражение √3sinx-cosx к виду C sin(x+t) или С cos (x+t) теория A*sin(x)+B*cos(x) = ={ sinx*A/корень(A^2+B^2)+/корень(A^2+B^2)*cosx } * корень(A^2+B^2)= ={ sin(x+arcsin(B/корень(A^2+B^2)) } * корень(A^2+B^2) решение √3sinx-cosx = {sin(x)*√3/2-cosx*(1/2)} * 2 = {sin(x)*cos(pi/6)-cosx*sin(pi/6)} * 2 = =2*sin(x-pi/6)
2. найдите область значения функции y=9sinx+12 cos x
y=9sinx+12 cos x = = { sin(x)*9/корень(9^2+12^2) + cos(x)*12/корень(9^2+12^2)} * корень(9^2+12^2) = = { sin(x)*0,6 + cos(x)*0,8} * 15 = 15*sin(x+arcsin(0,8)) ответ - область значений от -15 до +15
3. решите уравнение sin 3x + √3 cos 3x =2 sin 3x + √3 cos 3x =2
sin 3x*1/2 + √3/2 cos 3x =2/2=1 sin (3x+arcsin(√3/2)) = 1 3x+pi/3 = pi/2+2*pi*k 3x = pi/6+2*pi*k x = pi/18+2*pi*k/3
Вспомним основные формулы, связанные с арифметической прогрессией.
a_n=a_1+(n-1)d;
S_n=(1/2)(a_1+a_n)·n=(1/2)(2a_1+(n-1)d)·n
В частности, S_4=(1/2)(2a_1+3d)·4=2(42-d);
18=42-d; d=24; a_1=21-2d= - 27.
Подставим в формулу для S_n найденные числа:
300=S_n=(1/2)(-54+24(n-1))n; 300= - 27n+12n^2-12n;
12n^2-39n-300=0; 4n^2-13n-100=0; D=1769. Дискриминант не является квадратом целого числа, поэтому с сожалением приходится признать, что не самая простая работа ни к чему не привела. Возможно, у Вас неправильно указана S_n
теория
A*sin(x)+B*cos(x) =
={ sinx*A/корень(A^2+B^2)+/корень(A^2+B^2)*cosx } * корень(A^2+B^2)=
={ sin(x+arcsin(B/корень(A^2+B^2)) } * корень(A^2+B^2)
решение
√3sinx-cosx = {sin(x)*√3/2-cosx*(1/2)} * 2 = {sin(x)*cos(pi/6)-cosx*sin(pi/6)} * 2 =
=2*sin(x-pi/6)
2. найдите область значения функции y=9sinx+12 cos x
y=9sinx+12 cos x =
= { sin(x)*9/корень(9^2+12^2) + cos(x)*12/корень(9^2+12^2)} * корень(9^2+12^2) =
= { sin(x)*0,6 + cos(x)*0,8} * 15 = 15*sin(x+arcsin(0,8))
ответ - область значений от -15 до +15
3. решите уравнение sin 3x + √3 cos 3x =2
sin 3x + √3 cos 3x =2
sin 3x*1/2 + √3/2 cos 3x =2/2=1
sin (3x+arcsin(√3/2)) = 1
3x+pi/3 = pi/2+2*pi*k
3x = pi/6+2*pi*k
x = pi/18+2*pi*k/3