То́ждество — это равенство, выполняющееся на всём множестве значений входящих в него переменных. Чтобы доказать тождество надо выполнить тождественные преобразования одной или обеих частей равенства, и получить слева и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством, достаточно найти одно допустимое значение переменной, при котором, получившиеся числовые выражения не будут равны друг другу.
1) ( -m-n)^2=(m-n)^2 m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение.
( -m-n)^2=(m+n)^2 m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение
2) (-m+n)^2=(m-n)^2 m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
( 380/x ) - ( 380/y ) = 19/6
•••••••••
5x = 380 - 3y
x = 76 - 0,6y
••••••••••
( 380y - 380x ) / xy = 19/6
6( 380y - 380x ) = 19xy
2280y - 2280x = 19xy
120y - 120x = xy
120y - 120( 76 - 0,6y ) = y( 76 - 0,6y )
120y - 9120 + 72y = 76y - 0,6y^2
192y - 9120 = 76y - 0,6y^2
0,6y^2 + 116y - 9120 = 0
D = 13456 + 21888 = 35344 = 188^2
y1 = ( - 116 + 188 ) : 1,2 = 60
y2 = ( - 116 - 188 ) : 1,2 = - 304 : 1,2 = - 3040/12 = - 760/3 = - 253 1/3
X = 76 - 0,6y
X1 = 76 - 36 = 40
X2 = 76 + ( 3/5 )•( 760/3 ) = 76 + ( 760/5 ) = 76 + 152 = 228
ответ ( 40 ; 60 ) ; ( 228 ; - 253 1/3 )
Чтобы доказать тождество надо выполнить тождественные преобразования одной или обеих частей равенства, и получить слева
и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством,
достаточно найти одно допустимое значение переменной, при котором,
получившиеся числовые выражения не будут равны друг другу.
1) ( -m-n)^2=(m-n)^2
m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение.
( -m-n)^2=(m+n)^2
m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение
2) (-m+n)^2=(m-n)^2
m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
(-m+n)^2=(m+n)^2
m^2-2mn+n^2=m^2+2mn+n^2
И так же делаешь остальные два.