В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Варька111111111
Варька111111111
27.04.2022 02:18 •  Алгебра

с алгеброй 1)Постройте график функции f(x)={1. 2x + 1, если x ≤ -3 2. -x - 2, если x > -3. Сколько точек пересечения имеет данный график с прямой y = a в зависимости от a
2)Для каждой линейной функции по её графику определите значение b (изображение 1)
3На рисунке изображены графики линейной функции y = kx + b. Установите соответствие между графиками и знаками коэффициентов k и b (изображение 2)


с алгеброй 1)Постройте график функции f(x)={1. 2x + 1, если x ≤ -3 2. -x - 2, если x > -3. Скольк
с алгеброй 1)Постройте график функции f(x)={1. 2x + 1, если x ≤ -3 2. -x - 2, если x > -3. Скольк

Показать ответ
Ответ:
Mashka2004yandezlive
Mashka2004yandezlive
05.02.2021 06:12

А1) 2

А2) 4 координатная четверть

Объяснение:

А1) Мы можем подставить все значения аргумента для каждого вариант ответа в функцию, и убедится, что y(1) дает наименьшее значение из предложенных. Также можно посмотреть на выражение в функции 2-5x. Если выбирать отрицательный аргумент, то мы только прибавим к 2 некоторое число. Если выбрать как аргумент 0, то останется y=2. А вот если выбрать положительный аргумент, то мы из двойки будем вычитать какое-либо число, что и даст нам наименьшее значение. Положительный аргумент тут у одного вариант ответа: y(1)

А2) Абсцисса положительна, а ордината отрицательна. Это правая нижняя координатная четверть, то есть четвертая.

0,0(0 оценок)
Ответ:
linalinalogin
linalinalogin
07.12.2021 23:17

f(x)=\left\{\begin{array}{l}2^{x}\ ,\ \ x\leq 0\ ,\\-x^2\ ,\ \ 0

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .

a)\ \ \lim\limits _{x \to 0-0}f(x)=\lim\limits _{x \to 0-0}2^{x}=1\ \ ,\ \ \ \lim\limits _{x \to 0+0}f(x)=\lim\limits _{x \to 0+0}(-x^2)=0\\\\\lim\limits _{x \to 0-0}f(x)\ne \lim\limits _{x \to 0+0}f(x)\ \ \Rightarrow

При х=0 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(-x^2)=-4\ ,\ \ \lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}(x-6)=-4\\\\f(2)=(-x^2)\Big|_{x=2}-4\\\\\lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2+0}f(x)=f(2)=-4\ \ \ \Rightarrow

При х=2 функция непрерывна.

c)\ \ \lim\limits _{x \to 5-0}f(x)=\lim\limits _{x \to 5-0}(x-6)=-1\\\\\lim\limits _{x \to 5+0}f(x)=\lim\limits _{x \to 5+0}3^{\frac{4x}{x-5}}=3^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошной линией.

На 1 рисунке нет чертежа функции  y=3^{\frac{4x}{x-5}}   при х>5  , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота