с алгеброй 3) Является ли отображение функциональной зависимостью? Дескрипторы: 1. Определяет какой из графиков является графиком функции (один случай)
2. Определяет какой из графиков является графиком функции (все случаи)
3.Определяет функциональную зависимость, используя таблицы (один случай)
4.Определяет функциональную зависимость, используя таблицы (все случаи)
5.Определяет функциональную зависимость, используя графы
a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.
1) a^2 - 10a +25 = ( a - 5 )^2 ( a - 5 )^2=a^2-10a+25
a^2-10a+25=a^2-10a+25
a^2-10a+25-a^2+10a-25=0
0=0
2) 25 - a^2 = ( 5 + a )( a - 5 ) 3) ( b - 1 )( a - 5 ) = - ( 1 - b )( a - 5 )
25-a^2-5a+a^2+25a-5a=0 ( b - 1 )( a - 5 )=(b+1)(a - 5)
15a+25=0 ba-a-5b-ba-a+5b+5=0
15a=-25 2a+5=0
a=-25/-15 2a=-5
a=5/3 a=-5/-2
a=2.5