4) Точка пересечения с осью ОУ (при х=0) одна - это (0,0).
5) Точка пересечения с осью ОХ тоже одна - (0,0), так как
6) Интервалы монотонности и точки экстремума функции:
Подсчитаем знаки производной y' на полученных интервалах:
При переходе через точки х=0 и х= -1 производная не меняет знак, значит точки х=0 и х= -1 не являются точками экстремума. А на промежутках, где производная всюду положительна, сама функция возрастает.
7) Интервалы выпуклости и вогнутости, точки перегиба функции:
Определим знаки второй производной y'' на интервалах:
На промежутках, где y''<0, функция y(x) выпукла, а там, где y''>0, функция вогнута. Точки перегиба - те точки, при переходе через которые у'' меняет знак,это х= -1 , х= -0,5 , х=0 .
8) Для более точного построения графика найдём координаты некоторых промежуточных точек: (-1,-1) , (-0,5 ; -0,5) .
y=6x⁵+15x⁴+10x³
1) Область определения: х∈(-∞,+∞) .
2) Множество значений: у∈(-∞,+∞) .
3) Эта кривая не имеет асимптот, так как
.
Нет точек разрыва.
4) Точка пересечения с осью ОУ (при х=0) одна - это (0,0).
5) Точка пересечения с осью ОХ тоже одна - (0,0), так как
6) Интервалы монотонности и точки экстремума функции:
Подсчитаем знаки производной y' на полученных интервалах:
При переходе через точки х=0 и х= -1 производная не меняет знак, значит точки х=0 и х= -1 не являются точками экстремума. А на промежутках, где производная всюду положительна, сама функция возрастает.
Интервалы возрастания функции: x∈(-∞,-1 ]∪[-1,0 ]∪[0,+∞) .
7) Интервалы выпуклости и вогнутости, точки перегиба функции:
Определим знаки второй производной y'' на интервалах:
На промежутках, где y''<0, функция y(x) выпукла, а там, где y''>0, функция вогнута. Точки перегиба - те точки, при переходе через которые у'' меняет знак,это х= -1 , х= -0,5 , х=0 .
8) Для более точного построения графика найдём координаты некоторых промежуточных точек: (-1,-1) , (-0,5 ; -0,5) .
График на рисунке.
1, Дано: F(x) = x²-2*x -3 - функция, Хо = 2.
Найти: Уравнение касательной.
Решение.
Y = F'(Xo)*(x - Xo) + F(Xo) .
Находим первую производную - k - наклон касательной.
F'(x) = 2*x -2.
Вычисляем в точке Хо = 2.
F'(2) = 2 - производная и F(2) = -3 - функция.
Записываем уравнения прямой.
Y = 2*(x - 2) -3 =
Рисунок к задаче в приложении.
y =2*x -7 - касательная - ОТВЕТ
2. Дано: F(x) = 4 - x, Xo = -1
Это уравнение прямой - касательной не может быть, она просто совпадает с функцией.
y = 4 - x - касательная - ОТВЕТ
3, Дано: F(x)= - x²+2*x +3 - функция, Хо = -2.
Найти: Уравнение касательной.
Решение.
Y = F'(Xo)*(x - Xo) + F(Xo) .
Находим первую производную - k - наклон касательной.
F'(x) = -2*x + 2.
Вычисляем в точке Хо = -2.
F'(-2) = 6 - производная и F(-2) = -5 - функция.
Записываем уравнения прямой.
Y = 6*(x - (-2) -5) = y = 6*x + 7 - касательная - ОТВЕТ
Рисунок к задаче в приложении.