Пусть Х - производительность изделий в день по плану У - необходимое число дне по плану
Бригада увеличила производительность в день на 2 изделия, тогда Х + 3 - производительность изделий в день У - 3 - число дней уменьшилось на 3 дня, из-за повышения производительности.
Объем работ определяется
где Р - производительность; N - число дней. По условию задачи, объем задан и равен 120 шт.
Пусть т первый корень уравнения, тогда 2т второй корень уравнения. Подставив значения корней в уравнение ( т и 2т ) получаем систему 2х уравнений с неизвестными т и к. Решив ее, найдем значения первого корня и кожффициента к.
2т^2-кт+4=0 8т^2-2кт+4=0
-4т^2+2кт-8=0 8т^2-2кт+4=0
4т^2-4=0 2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6, если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
У - необходимое число дне по плану
Бригада увеличила производительность в день на 2 изделия, тогда
Х + 3 - производительность изделий в день
У - 3 - число дней уменьшилось на 3 дня, из-за повышения производительности.
Объем работ определяется
где Р - производительность; N - число дней.
По условию задачи, объем задан и равен 120 шт.
Составим систему уравнений
Из первого уравнения
Подставляем во втрое
Корни уравнения х = 8 и х = -10 - лишний корень
ответ: 8 изд. в день
2т^2-кт+4=0
8т^2-2кт+4=0
-4т^2+2кт-8=0
8т^2-2кт+4=0
4т^2-4=0
2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6,
если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
ответ: к=6, х1=1, х2=2 или к= -6, х1= -1, х2= -2