Повторные независимые испытания. Схема Бернулли. Число попаданий - случайная величина, принимающая значения от 0 до 5. Найдем вероятности появления этих значений.
Вероятность Значения 0. Число сочетаний из 5(выстрелов всего) по 0(рассматриваемое значение) - это 1 - умножим на 0.5 в степени 0 и на 1-0.5 в степени 5-0. Получаем 0.03125. Это 1/32.
Вероятность значения 1. Число сочетаний из 5 по 1 - это 5 - умножается на 0.5 в степени 1 и на 1-0.5 в степени 5-1. Получаем 0.15625. Это 5/32.
Вероятность значения 2. Число сочетаний из 5 по 2 - это 10 - умножаем на 0.5 в степени 2 ина 1-0.5 в степени 5-2. Получаем 0.3125. Это 10/32.
Далее вероятности располагаются в обратном порядке в силу симметричности числа сочетаний и того, что 1-0.5 равно 0.5.
N 33.11
1) (a^2 - b^2)^3 = a^6 - 3 * (a^2)^2 * b^2 + 3*a^2 * (b^2)^2 - b^6 = a^6 - 3a^4b^2 + 3a^2b^4 - b^6
2) (m^2 + n^2)^3 = m^6 + 3 * (m^2)^2 * n^2 + 3 * m^2 * (n^2)^2 + n^6 = m^6 + 3m^4n^2 + 3m^2n^4 + n^6
3) (2a^2 + b^2)^3 = 8a^6 + 3 * (2a^2)^2 * b^2 + 3 * 2a^2 * (b^2)^2 + b^6 = 8a^6 + 12a^4b^2 + 6a^2b^4 + b^6
4) (x^4 - 6y^2)^3 = x^12 - 3 * (x^4)^2 * 6y^2 + 3 * x^4 * (6y^2)^2 - 216y^6 = x^12 - 18x^8y^2 + 108x^4y^4 - 216y^6
5) (7m^3 - n^4)^3 = 343m^9 - 3 * (7m^3)^2 * n^4 + 3 * 7m^3 * (n^4)^2 - n^12 = 343m^9 - 147m^6n^4 + 21m^3n^8 - n^12
6) (a^3 - 1/3b^2)^3 = a^9 - 3 * (a^3)^2 * 1/3b^2 + 3 * a^3 * (1/3b^2)^2 - 1/27b^6 = a^9 - a^6b^2 + 1/3a^3b^4 - 1/27b^6
7) (0,3x^5 - 0,5y^2)^3 = 0,027x^15 - 3 * (0,3x^5)^2 * 0,5y^2 + 3 * 0,3x^5 * (0,5y^2)^2 - 0,125y^6 = 0,027x^15 - 0,135x^10y^2 + 0,225x^5y^4 - 0,125y^6
8) (0,6x^4 - 1/2y^3)^3 = 0,216x^12 - 3 * (0,6x^4)^2 * 1/2y^3 + 3 * 0,6x^4 * (1/2y^3)^2 - 1/8y^9 = 0,216x^12 - 0,54x^8y^3 + 0,45x^4y^6 - 1/8y^9
9) (1/5a^2 + 0,36^4)^3 = 0,008a^2 + 3 * (1/5a^2)^2 * 0,36^4 + 3 * 1/5a^2 * (0,36^4)^2 + 0,000604738= 0,008a^2 + 0,002015539a^4 + 0,000169267a^2 + 0,000604738
N 33.12
1) 8x^3 - 60x^2y + 150xy^2 - 125y^3 = 2x^3 - 3 *(2x)^2 * 5y + 3 * 2x * (5y)^2 - 5y^3 = (2x - 5y)^3
2)64a^15 + 144a^10b^3 + 108a^5b^3 + 27b^9 = 4a^15 + 3 * (4a^5)^2 * 3b^3 + 3 * 4a^5 * (3b^3)^2 + 3b^9 = (4a^5 + 3b^3)^3
3)0,125a^9 - 0,15a^6b^4 + 0,06a^3b^8 - 0,008b^12 = = 0,5a^9 - 3 * (0,5a^3)^2 * 0,2b^4 + 3 * 0,5a^3 * (0,2b^4)^2 - 0,2b^12 = (0,5a^3 - 0,2b^4)^3
4)0,216x^12 + 0,54x^8y^5 + 0,45x^4y^10 + 0,125y^15 = 0,6x^12n+ 3 * (0,6x^4)^2 * 0,5y^5 + 3 * 0,6x^4 * (0,5y^5)^2 + 0,5y^15 = (0,6x^4 + 0,5y^5)^3
Объяснение:
Повторные независимые испытания. Схема Бернулли. Число попаданий - случайная величина, принимающая значения от 0 до 5. Найдем вероятности появления этих значений.
Вероятность Значения 0. Число сочетаний из 5(выстрелов всего) по 0(рассматриваемое значение) - это 1 - умножим на 0.5 в степени 0 и на 1-0.5 в степени 5-0. Получаем 0.03125. Это 1/32.
Вероятность значения 1. Число сочетаний из 5 по 1 - это 5 - умножается на 0.5 в степени 1 и на 1-0.5 в степени 5-1. Получаем 0.15625. Это 5/32.
Вероятность значения 2. Число сочетаний из 5 по 2 - это 10 - умножаем на 0.5 в степени 2 ина 1-0.5 в степени 5-2. Получаем 0.3125. Это 10/32.
Далее вероятности располагаются в обратном порядке в силу симметричности числа сочетаний и того, что 1-0.5 равно 0.5.
Ряд распределения:
0 1 2 3 4 5
0,3125 0,15625 0,3125 0,3125 0,15625 0,03125
Проверка. Сумма всех вероятностей равна 1.