Bn=2n³ b₁=2*1³=2 b₂=2*2³=2*8=16 b₃=2*3³=54 b₄=2*4³=128 Геометрическая прогрессия имеет вид: bn=b₁*qⁿ⁻¹ Проверим соответствует ли данная последовательность формуле: q=b₂/b₁=2/1=2 q=b₃/b₂=16/2=8 даже из этих равенств видно, что это не геометрическая прогрессия НЕ ЯВЛЯЕТСЯ
5-й член геометрической последовательностиb1=4, q = -3 b₅=b₁*q⁵⁻¹=4*(-3)⁴=-108
Найти сумму первых шести членов геометрической прогрессии, если b1=9, q = 1/3 S₆=b₁(1-qⁿ)/(1-q)=9*(1-(1/3)⁶)/(1-1/3)=9*(1-1/729)/(2/3)= 9*3*728/(729*2)= 364/27
Найти первый член геометрической прогрессии, если b5=1/162, q = 1/2 b₅=b₁*q⁴ b₁=b₅/q⁴=1/162:(1/2)⁴=16/162=8/81
Найдите член геометрической прогрессии, обозначенный буквой х …; 2; х; 18; -54; q=-54/18=-3 x=18:(-3)=-6
1)Если в уравнении есть знак модуля, то это предполагает, что уравнение развалится на 2, т.к. "снимая" знак модуля , мы разбираем 2 возможных случая: |x| = x при х ≥ 0 |x| = - х при х меньше 0 а) Sin x ≥ 0 (2πk ≤ x ≤π + 2πk, k∈Z) (*) Уравнение запишем: Cos² x - Sin x +1 = 0 Решаем. 1 - Sin² x - Sin x +1 = 0 -Sin² x - Sin x +2 = 0 D =9 Sin x = -2 (нет решений) Sin x =1 x = π/2 + 2πk, k∈Z ( входит в (*) б) Sin x меньше 0 (π + 2πn меньше х меньше 2π + 2πn, n∈Z)(**) Уравнение запишем: Сos² x + Sin x +1 = 0 решаем: 1 - Sin² x +Sin x +1 = 0 - Sin² x + Sin x +2 = 0 D = 9 Sin x = -1 x = -π/2+ 2πn,n∈Z ( входит в (**) Sin x =2( нет решения) 2) Sin² x + Cos ² x +5Sin x Cos x +3Cos² x = 0 Sin² x + 5Sin x Cos x +4 Cos² x = 0 | : Cos² x≠0 tg² x + 5tg x +4 = 0 а) tg x = - 4 б) tg x = -1 x = arctg(-4) + πk,k∈Z x = arctg(-1) + πn,n∈Z x = - π/4 + πn, n∈Z 3)
b₁=2*1³=2
b₂=2*2³=2*8=16
b₃=2*3³=54
b₄=2*4³=128
Геометрическая прогрессия имеет вид:
bn=b₁*qⁿ⁻¹
Проверим соответствует ли данная последовательность формуле:
q=b₂/b₁=2/1=2
q=b₃/b₂=16/2=8 даже из этих равенств видно, что это не геометрическая прогрессия
НЕ ЯВЛЯЕТСЯ
5-й член геометрической последовательностиb1=4, q = -3
b₅=b₁*q⁵⁻¹=4*(-3)⁴=-108
Найти сумму первых шести членов геометрической прогрессии, если b1=9, q = 1/3
S₆=b₁(1-qⁿ)/(1-q)=9*(1-(1/3)⁶)/(1-1/3)=9*(1-1/729)/(2/3)= 9*3*728/(729*2)= 364/27
Найти первый член геометрической прогрессии, если b5=1/162, q = 1/2
b₅=b₁*q⁴
b₁=b₅/q⁴=1/162:(1/2)⁴=16/162=8/81
Найдите член геометрической прогрессии, обозначенный буквой х …; 2; х; 18; -54;
q=-54/18=-3
x=18:(-3)=-6
|x| = - х при х меньше 0
а) Sin x ≥ 0 (2πk ≤ x ≤π + 2πk, k∈Z) (*)
Уравнение запишем: Cos² x - Sin x +1 = 0 Решаем.
1 - Sin² x - Sin x +1 = 0
-Sin² x - Sin x +2 = 0
D =9 Sin x = -2 (нет решений)
Sin x =1
x = π/2 + 2πk, k∈Z ( входит в (*)
б) Sin x меньше 0 (π + 2πn меньше х меньше 2π + 2πn, n∈Z)(**)
Уравнение запишем: Сos² x + Sin x +1 = 0 решаем:
1 - Sin² x +Sin x +1 = 0
- Sin² x + Sin x +2 = 0
D = 9 Sin x = -1
x = -π/2+ 2πn,n∈Z ( входит в (**)
Sin x =2( нет решения)
2) Sin² x + Cos ² x +5Sin x Cos x +3Cos² x = 0
Sin² x + 5Sin x Cos x +4 Cos² x = 0 | : Cos² x≠0
tg² x + 5tg x +4 = 0
а) tg x = - 4 б) tg x = -1
x = arctg(-4) + πk,k∈Z x = arctg(-1) + πn,n∈Z
x = - π/4 + πn, n∈Z
3)