В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Кратосчелавек
Кратосчелавек
06.05.2022 22:23 •  Алгебра

с Алгеброй, нужно решить системы уравнения
1) 9 меньше,либо равно x+3
6-3x больше 10-2x
2) 1-4x меньше 2-5x
-x больше 2

Показать ответ
Ответ:
2007628475626
2007628475626
03.04.2021 01:09
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
0,0(0 оценок)
Ответ:
макс3102
макс3102
24.07.2021 11:28

Условие

На какую цифру оканчивается число 19891989? А на какие цифры оканчиваются числа 19891992, 19921989, 19921992?

Подсказка

Попробуйте определить, каковы последние цифры у чисел 91989, 91992, 21989, 21992.

Решение

 Поскольку нас интересуют только последние цифры результатов, то достаточно определить, каковы последние цифры у чисел 91989, 91992, 21989 и 21992.

 Число 9 при возведении в степень даёт два варианта последних цифр – 9 (если степень нечётная) и 1 (если степень чётная). Это значит, что 91989 имеет последнюю цифру 9, а 91992 – цифру 1.

 Число 2 при возведении в степень может давать следующие последние цифры: 2, 4, 8, 6. Если показатель степени при делении на 4 даёт остаток 1 – последняя цифра будет 2; если остаток 2 – последняя цифра будет 4; остаток 3 – последняя цифра 8; без остатка – последняя цифра 6. Это значит, что 21989 имеет последнюю цифру 2, а 21992 – цифру 6.

ответ

9, 1, 2, 6.

Объяснение:

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота