(3 1/3; 3)
Объяснение:
Система уравнений:
(6-x)²+(-3-y)²=4/9 ·97
(x-2)²+(y-6)²=97/9; 4(x-2)²+4(y-6)²=4·97/9
(6-x)²+(-3-y)²-4(x-2)²-4(y-6)²=4/9 ·97 -4·97/9
(6-x)²-(2x-4)²+(3+y)²-(2y-12)²=0
(6-x-2x+4)(6-x+2x-4)+(3+y-2y+12)(3+y+2y-12)=0
(10-3x)(2+x)+(15-y)(3y-9)=0
10-3x=0; 3x=10; x₁=10/3
2+x=0; x₂=-2
15-y=0; y₁=15
3y-9=0; 3y=9; y=9/3; y₂=3
Проверка:
при x₁=10/3 и y₁=15
(10/3 -2)²+(15-6)²=97/9
(10/3 -6/3)²+81=97/9
9·16/9+9·81=97 - равенство не выполняется, так как уже 9·81>97, следовательно, корень y₁ к данной системе вообще не подходит;
при x₁=10/3 и y₂=3
(10/3 -2)²+(3-6)²=97/9
9·16/9 +9·9=97
16+81=97- равенство выполняется;
при x₂=-2 и y₂=3
(-2-2)²+(3-6)²=97/9
9(16+9)=97
9·25≠97 - равенство не выполняется, так как 9·25>97.
Отсюда следует, что единственными корнями являются:
x₁=10/3=3 1/3 и y₂=3.
h(t) = 30t − 6t²
Даже ничего не зная, можно в уме подставить значения t, в эту функцию...
h(0) = 30 • 0 − 6 • 0 = 0 — вначале высота нулевая
h(1) = 30 • 1 − 6 • 1 = 24 — через 1 секунду. высота = 24 метров
h(2) = 30 • 2 − 6 • 4 = 36 — через 2 секунды будет 36 метров
h(3) = 30 • 3 − 6 • 9 = 36 — оппа. Значит где-то между 2-й и 3-й секундой мячик дошел до максимальной высоты и начал снова падать.
h(4) = 30 • 4 − 6 • 16 = 24
h(5) = 30•5 − 6•25 = 0 — оппа. Ничего не зная можно было выяснить, что мяч упадет на землю через 5 секунд!)
А максимум функции можно найти, если решить уравнение "производная функции" = 0
h'(t)= 30 - 12t
30 - 12t = 0
12t = 30
t = 5 / 2 = 2.5
Т. е. максимума достигает через 2.5 секунды.
h(2.5)= 30 • 2.5 - 6 • 6.25 = 37.5
Максимальная высота: 37.5 метров;
Упадет на землю спустя 5 секунд после удара
(3 1/3; 3)
Объяснение:
Система уравнений:
(6-x)²+(-3-y)²=4/9 ·97
(x-2)²+(y-6)²=97/9; 4(x-2)²+4(y-6)²=4·97/9
(6-x)²+(-3-y)²-4(x-2)²-4(y-6)²=4/9 ·97 -4·97/9
(6-x)²-(2x-4)²+(3+y)²-(2y-12)²=0
(6-x-2x+4)(6-x+2x-4)+(3+y-2y+12)(3+y+2y-12)=0
(10-3x)(2+x)+(15-y)(3y-9)=0
10-3x=0; 3x=10; x₁=10/3
2+x=0; x₂=-2
15-y=0; y₁=15
3y-9=0; 3y=9; y=9/3; y₂=3
Проверка:
при x₁=10/3 и y₁=15
(10/3 -2)²+(15-6)²=97/9
(10/3 -6/3)²+81=97/9
9·16/9+9·81=97 - равенство не выполняется, так как уже 9·81>97, следовательно, корень y₁ к данной системе вообще не подходит;
при x₁=10/3 и y₂=3
(10/3 -2)²+(3-6)²=97/9
9·16/9 +9·9=97
16+81=97- равенство выполняется;
при x₂=-2 и y₂=3
(-2-2)²+(3-6)²=97/9
9(16+9)=97
9·25≠97 - равенство не выполняется, так как 9·25>97.
Отсюда следует, что единственными корнями являются:
x₁=10/3=3 1/3 и y₂=3.
h(t) = 30t − 6t²
Даже ничего не зная, можно в уме подставить значения t, в эту функцию...
h(0) = 30 • 0 − 6 • 0 = 0 — вначале высота нулевая
h(1) = 30 • 1 − 6 • 1 = 24 — через 1 секунду. высота = 24 метров
h(2) = 30 • 2 − 6 • 4 = 36 — через 2 секунды будет 36 метров
h(3) = 30 • 3 − 6 • 9 = 36 — оппа. Значит где-то между 2-й и 3-й секундой мячик дошел до максимальной высоты и начал снова падать.
h(4) = 30 • 4 − 6 • 16 = 24
h(5) = 30•5 − 6•25 = 0 — оппа. Ничего не зная можно было выяснить, что мяч упадет на землю через 5 секунд!)
А максимум функции можно найти, если решить уравнение "производная функции" = 0
h'(t)= 30 - 12t
30 - 12t = 0
12t = 30
t = 5 / 2 = 2.5
Т. е. максимума достигает через 2.5 секунды.
h(2.5)= 30 • 2.5 - 6 • 6.25 = 37.5
Максимальная высота: 37.5 метров;
Упадет на землю спустя 5 секунд после удара