Сервис поддерживает возможность построения графиков функций как вида , так и вида . Для того, чтобы построить график функции  на отрезке  нужно написать в строке: f[x],{x, a, b}. Если Вы хотите, чтобы диапазон изменения ординаты  был конкретным, например , нужно ввести: f[x],{x, a, b},{y, c, d}.
Примеры
x^2+x+2, {x,-1,1};
x^2+x+2, {x,-1,1},{y,-1,5};
Sin[x]^x, {x,-Pi,E};
Sin[x]^x, {x,-Pi,E},{y,0,1}.
Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}.
Примеры
x&&x^2&&x^3, {x,-1,1},{y,-1,1};
Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}.
Для того, чтобы построить график функции  на прямоугольнике , нужно написать в строке: f[x, y],{x, a, b},{y, c, d}. К сожалению, диапазон изменения аппликаты  пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции  Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2x
Знаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1
Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1
Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
Построение графиков функций
Сервис поддерживает возможность построения графиков функций как вида , так и вида . Для того, чтобы построить график функции  на отрезке  нужно написать в строке: f[x],{x, a, b}. Если Вы хотите, чтобы диапазон изменения ординаты  был конкретным, например , нужно ввести: f[x],{x, a, b},{y, c, d}.
Примеры
x^2+x+2, {x,-1,1};
x^2+x+2, {x,-1,1},{y,-1,5};
Sin[x]^x, {x,-Pi,E};
Sin[x]^x, {x,-Pi,E},{y,0,1}.
Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}.
Примеры
x&&x^2&&x^3, {x,-1,1},{y,-1,1};
Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}.
Для того, чтобы построить график функции  на прямоугольнике , нужно написать в строке: f[x, y],{x, a, b},{y, c, d}. К сожалению, диапазон изменения аппликаты  пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции  Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).
Примеры
Sin[x^2+y^2],{x,-1,-0.5},{y,-2,2};
xy,{x,-4,4},{y,-4,4}.
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2xЗнаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).