Пусть ширина листа (сторона квадрата) равна b=х см. После того, как от прямоугольного листа картона отрезали квадрат, длина оставшегося прямоугольника стала равна a=16-х см. Площадь прямоугольника равна: S=a*b=60 см² Составим и решим уравнение: х(16-х)=60 16х-х²=60 х²-16х+60=0 D=b²-4ac=(-16)²-4*1*60=256-240=16 (√16=4) х₁= = = 10 х₂= = = 6 ОТВЕТ: ширина листа равна 10 см; ширина листа равна 6 см.
По теореме Виета: х²-16х+60=0 х₁+х₂=16 х₁*х₂=60 х₁=10 х₂=6
Проверим: Ширина листа равна 10 см, длина 16 см. Вырезанный квадрат со стороной а=10 см. Ширина оставшегося прямоугольника равна 10 см, длина 16-10=6 см. Площадь равна: S=10*6=60 см².
Ширина листа равна 6 см, длина 16 см. Вырезанный квадрат со стороной а=6 см. Ширина оставшегося прямоугольника равна 6 см, длина 16-6=10 см. Площадь равна: S=6*10=60 см².
Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
Площадь прямоугольника равна: S=a*b=60 см²
Составим и решим уравнение:
х(16-х)=60
16х-х²=60
х²-16х+60=0
D=b²-4ac=(-16)²-4*1*60=256-240=16 (√16=4)
х₁= = = 10
х₂= = = 6
ОТВЕТ: ширина листа равна 10 см; ширина листа равна 6 см.
По теореме Виета:
х²-16х+60=0
х₁+х₂=16
х₁*х₂=60
х₁=10
х₂=6
Проверим:
Ширина листа равна 10 см, длина 16 см.
Вырезанный квадрат со стороной а=10 см.
Ширина оставшегося прямоугольника равна 10 см, длина 16-10=6 см. Площадь равна: S=10*6=60 см².
Ширина листа равна 6 см, длина 16 см.
Вырезанный квадрат со стороной а=6 см.
Ширина оставшегося прямоугольника равна 6 см, длина 16-6=10 см. Площадь равна: S=6*10=60 см².
Упростим выражение 1 - sin (2 * a) - cos (2 * a).
Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
Объяснение: