с алгеброй Самостоятельная работа ( тестирование) по алгебре в 11 классе по теме: «Первообразная и интеграл».
Вариант 1.
Часть А
Найдите какую-либо первообразную функции у = 3/(4x^2 )
1) 1 – 3/(4x^2 ); 2) 3 + 3/4х; 3) 5 – 3/4х; 4) 4 + 3/(4x^3 ).
Для функции у = –3 sinx найдите первообразную, график которой проходит через точку М(0;10)
1) –3соsx + 13; 2) 3соsx + 7; 3) –3sinx + 10; 4) 5соsx + 1.
Вычислите неопределенный интеграл ∫▒(2х- 1/x^2 )dx
1) x^2-1/x^2 + C; 2) x^2+ 1/х+ C; 3) 2x^2-1/х+ C; 4) 〖2x〗^2+ 1/х+ C.
Вычислите определенный интеграл ∫_1^3▒2dx
1)4; 2) 2; 3) 6; 4) – 4.
Известно, что ∫_a^b▒〖f(x)dx=2.〗 Найдите 2∫_a^a▒〖f(x)dx+ ∫_b^a▒f(x)dx〗
1)2; 2) 0; 3) –2; 4) 4.
Часть В
Найдите площадь фигуры, ограниченной линиями у = х2, у = 0, х = 3, х = 4.
Функция у = F(x) + C является первообразной для функции f(х) = х2 + 3х, график которой проходит через точку М(1; 4). Найдите С.
Часть С
8.Точка движется прямолинейно, ее скорость выражается формулой v(t) = 1 + 2t. Найдите закон движения, если известно, что в момент времени t = 2 координата точки равнялась числу 5.
Пусть первый лыжник проходит 1 круг за х минут, тогда второй лыжник проходил один круг за (х-2) мин (так как ему по условию требовалось на 2 минуты меньше, чем первому).
час=60 минут
За час первый сделает 60\х кругов, второй 60\(х-2). По условию задачи разница за час между вторым и первым равна 1 кругу, таким образом составляем уравнение:
60\(х-2)-60\х=1
Решаем его (сводим к общему знаменателю, и умножаем на него, получим)
60*(x-(x-2))=x*(x-2) (сводим подобные члены, раскрывем скобки)
102=x^2-2x (переносим все члены уравнения в левую часть)
x^2-2x-120=0 (раскладываем на множители)
(x-12)(x+10)=0 (произведение равно 0, если хотя бы один из множителей равен 0, таким образом получаем 2 уравнения)
первое
x-12=0, откуда
x=12
второе
x+10=0,откуда
x=-10(невозможно, количевство минут не может быть отрицательным числом)
ответ: за 12 минут
Дано:
S=30 км
v(течения)=2 км/час
t(мот. лодка) = через 1 ч.
t(встречи)=2 ч.
Найти:
v(лодки)=? км/час
Решение
МАТЕМАТИЧЕСКИЙ Посчитаем, сколько всего времени плыл плот до встречи с моторной лодкой, зная что он отправился из пункта А на 1 час раньше и был ещё в пути 2 часа:
1+2=3 (часа) - плыл плот до встречи с моторной лодкой.
2) Посчитаем сколько км проплыл плот за 3 часа, зная что он проплыл по течению реки, скорость которой равна скорости плота v(теч.)=v (плота)= 2 км/час
S(расстояние)=v(скорость)×t(время)=2×3=6 (км) - проплыл плот до встречи с катером.
2) Вычислим какое расстояние проплыла моторная лодка за 2 часа, зная что плот проплыл из 30 км только 6 км:
30-6=24 (км) - за два часа проплыла моторная лодка.
3) Посчитаем скорость лодки против течения реки:
24÷2=12 (км/час)
4) Значит собственная скорость лодки равна:
v(против течения)=v(собст.) - v(течения)
отсюда
v(собств.)=v(течения)+v(против течения)=2+12=14 (км/час)
ответ: собственная скорость лодки равна 14 км/час
АЛГЕБРАИЧЕСКИЙ Пусть х км/час - собственная скорость моторной лодки. Значит, скорость лодки против течения реки составит х-2 км/час. Скорость плота равна скорости течения реки v(плота)=2 км/час.
Моторная лодка была в пути 2 часа и проплыла 2×(х-2) км.
Плот плыл 1 час +2 часа =3 часа и преодолел расстояние 3×2 =6 км.
Расстояние между ними составляло 30 км.
Составим и решим уравнение:
2×(х-2)+6=30
2х-4=30-6
2х-4=24
2х=24+4
2х=28
х=28÷2=14 (км/час) - собственная скорость катера.
ответ: собственная скорость катера равна 14 км/час.