Задание. Какие из чисел √18,√26,√30 заключены между числами 5 и 6. Решение: Проверим, заключен ли между числами 5 и 6 число √18, т.е., оценивая в виде двойного неравенства, получим
Возведем все части неравенства в квадрат, будем иметь
Отсюда следует, что число √18 не заключен между числами 5 и 6, т.к. неравенство 25<18 не верное.
Проверим теперь для √26, т.е. . Возведя все части неравенства в квадрат, получим . Неравенства выполняются, следовательно, число √26 заключен между числа 5 и 6.
Проверим теперь для √30, то есть, . Возведя все части неравенства в квадрат, получим: . Видим, что неравенства правильны, следовательно, число √30 заключен между числа 5 и 6.
Решение:
Проверим, заключен ли между числами 5 и 6 число √18, т.е., оценивая в виде двойного неравенства, получим
Возведем все части неравенства в квадрат, будем иметь
Отсюда следует, что число √18 не заключен между числами 5 и 6, т.к. неравенство 25<18 не верное.
Проверим теперь для √26, т.е. . Возведя все части неравенства в квадрат, получим . Неравенства выполняются, следовательно, число √26 заключен между числа 5 и 6.
Проверим теперь для √30, то есть, . Возведя все части неравенства в квадрат, получим: . Видим, что неравенства правильны, следовательно, число √30 заключен между числа 5 и 6.
ответ: √26 и √30.
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.