В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
igorlenkov2017
igorlenkov2017
31.05.2023 04:49 •  Алгебра

с алгеброй
нужно с РЕШЕНИЕМ​


с алгебройнужно с РЕШЕНИЕМ​

Показать ответ
Ответ:
BoomerLass
BoomerLass
30.01.2023 01:49

а) x² + 4x + 10 ≥ 0

D = 4² - 4· 10 = - 24

График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому  у > 0  и ответ

2) Решением неравенства является вся числовая прямая

b) -x² + 10x - 25 > 0

-(х - 5)² > 0

Поскольку -(х - 5)² < 0 при любых х, то ответ

1) Неравенство не имеет решений

c) x² + 3x + 2 ≤ 0

D = 3² - 4 · 2 = 1

x₁ = 0.5(-3 - 1) = -2

x₂ = 0.5(-3 + 1) = -1

График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ =  -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ

4) Решением неравенства является закрытый промежуток.

d) -x² + 4 < 0

x² - 4 > 0

График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ =  -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ

6) Решением неравенства является объединение двух промежутков.

Объяснение:

0,0(0 оценок)
Ответ:
Kirillf2006
Kirillf2006
19.05.2020 14:06
Решение:

Данное двойное неравенство равносильно системе двух квадратных неравенств:

\displaystyle \left \{ {{ 6x-9 < x^2} \atop { x^2 \leq 4x-3}} \right. ; \;\;\; \left \{ {{ x^2 - 6x + 9 0} \atop { x^2 - 4x+ 3 \leq 0}} \right.

Первое неравенство x^2 - 6x + 9 0.

Заметим, что в левой части скрывается квадрат разности (формула (a-b)^2 = a^2 - 2ab+b^2): (x-3)^2 = x^2 - 6x + 9.

Неравенство принимает следующий вид: (x-3)^2 0.

Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай: (x-3)^2 = 0 и x=3.

Значит, первой неравенство эквивалентно тому, что x \ne 3.

Второе неравенство x^2 - 4x + 3 \leq 0.

Вс уравнение x^2-4x+3=0 имеет по теореме Виета (утверждающей, что x_1x_2=3 и x_1+x_2=4) корни x_1=1 и x_2=3.

Из этого следует разложение левой части на множители: (x-1)(x-3) \leq 0.

Метод интервалов подсказывает решение x \in [ 1; 3 ].

     + + +                 - - -                    + + +    

_________[ \; 1 \; ]_________[ \; 3 \; ]_________

                     \\\\\\\\\\\\\\\\\\\\\

Значит, второе неравенство равносильно тому, что 1 \leq x \leq 3.

Имеем значительно более простую систему неравенств:

\displaystyle \left \{ {{ x\neq 3} \atop {1 \leq x \leq 3}} \right.

Вполне понятно, что ее решением является 1 \leq x < 3 (как пересечения двух промежутков).

Или же { x \in [1 ; 3)}.

Задача решена!

ответ:

\Large \boxed { \bf x \in \Big [ \; 1 ; \; 3 \; \Big )}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота