1) 2sin(3x-П/4)+1=0 2sin(3x-П/4)=-1 sin(3x-П/4)=-1/2 можно обозначить 3х-П/4 за y, тогда: sin y=-1/2 y=-П/6+2Пk или y=-5П/6+2Пk производим обратную замену 3х-П/4=-П/6+2Пk 3х-П/4=-5П/6+2Пk
Поскольку треугольник равнобедренный, то две стороны у него равны АВ=ВС. Пусть длина стороны АВ=х, длина стороны АС=у. Тогда периметр треугольника Р=х+х+у или 2х+у=48. Учитывая условие существования треугольника (сумма длин двух любых сторон больше длины третьей стороны), мы также получаем два неравенства 2х>у и х+у>х. Отсюда мы получаем множество решений, где длина основания треугольника может быть больше 0, но меньше 24, а длина бедра от 12 до 24 (не включая граничные значения)
Но я думаю, что какое-то условие Вы нам не дописали. :)
2sin(3x-П/4)=-1
sin(3x-П/4)=-1/2
можно обозначить 3х-П/4 за y, тогда:
sin y=-1/2
y=-П/6+2Пk
или
y=-5П/6+2Пk
производим обратную замену
3х-П/4=-П/6+2Пk
3х-П/4=-5П/6+2Пk
3х=-П/6+П/4+2Пk
3х=-5П/6+П/4+2Пk
3x=П/12+2Пk
3x=-7П/12+2Пk
x=(П/12)/3+(2Пk)/3
x=(-7П/12)/3+(2Пk)/3
x=П/36+(2Пk)/3
х=-7П/36+(2Пk)/3
2)sin(x/2+П/3)=1
x/2+П/3=П/2+Пk
x/2=П/2-П/3+Пk
х/2=П/6+Пk
x=(П/6)*2+(Пk)*2
x=П/3+2Пk
3)sin (2x+1)=-3/4
2x+1=-arcsin(3/4)+2Пk
2x+1=П+arcsin(3/4)+2Пk
2x=-arcsin(3/4)-1+2Пk
2x=П+arcsin(3/4)-1+2Пk
x=1/2*(-arcsin(3/4))-(1/2)+Пk
x=П/2+1/2*(-arcsin(3/4))-(1/2)+Пk
4)sin (2x -1)=2/5
2х-1=arcsin 2/5+2Пk
2х-1=П-arcsin 2/5+2Пk
2х=(arcsin 2/5)+1+2Пk
2х=(П-arcsin 2/5)+1+2Пk
х=1/2*(arcsin 2/5)+1/2+Пk
х=П/2-1/2*(arcsin 2/5)+1/2+Пk
0<у<24, 12<х<24, где х=АВ=ВС, у=АС
Объяснение:
Поскольку треугольник равнобедренный, то две стороны у него равны АВ=ВС. Пусть длина стороны АВ=х, длина стороны АС=у. Тогда периметр треугольника Р=х+х+у или 2х+у=48. Учитывая условие существования треугольника (сумма длин двух любых сторон больше длины третьей стороны), мы также получаем два неравенства 2х>у и х+у>х. Отсюда мы получаем множество решений, где длина основания треугольника может быть больше 0, но меньше 24, а длина бедра от 12 до 24 (не включая граничные значения)
Но я думаю, что какое-то условие Вы нам не дописали. :)