С ДЗ!
Задание. Во время соревнований по стрельбе спортсмен набрал следующее количество
очков: 9; 9: 8; 10; 8; 7: 9; 10; 8: 7. Найти: а) объём выборки: б) среднее арифметическое
выборки; в) медиану выборки.
Постройте равносторонний треугольник, у которого сторона в два
раза меньше данного отрезка.
Даны неразвернутый угол и отрезок. Постройте треугольник, у ко-
торого одна сторона в два раза больше другой и равна данному отрезку, а
угол, заключенный между этими сторонами, равен данному углу.
ОДЗ: x+1≠0 => x≠-1
D(f)=x∈(-∞;-1)∪(-1;+∞)
2. y=2x²-2х-3 (График №2)
а) промежуток возрастания:(-∞;0.5)
промежуток убывания:(0.5;+∞)
(f`(x)=4x-2; x=0.5 - экстремум)
б) наименьшее значение функции: y=-3
в) y<0 при -1<х<2
3. -х²-2х+8=0
f(x)=-x^2-2x+8 (График №3)
x₁=-4
x₂=2
4. {y=-√х+3 (График №4)
{y=|x-3|
ОДЗ: x≥0
x₁=0; y₁=3
x₂=1; y₂=2
x₃=4; y₃=1
5.y=х²+px-24
Точка (4;0) принадлежит данной параболе
0=4²+р*4-24
16+4p-24=0
4p=8
p=2
f(x)=x²+2x-24 (График №5)
ось симметрии проходит через вершину параболы,
координаты вершины параболы:
x₀=-b/2a
-2/2*1=-1
y₀=-D/4a
D=2²-4*1*(-24)=100
-100/4*1=-25
Координаты вершины (-1;-25)
Уравнение оси симметриии параболы: х=-1
Задача имеет 2 решения
A(5;5) C(-5;-5) или A(-5;-5) C(5;5)
Объяснение:
Введу обозначение-(MN) это вектор MN
Точки B(−5; 5) и D(5; −5) центрально симметричны относительно начала координат О(0; 0), что совпадёт с центром симметрии квадрата. Значит и точки А и С симметричны относительно относительно точки О.
Пусть координаты точки А(x; y), тогда координаты точки С(-x; -y)
AC²=(-x-x)²+(-y-y)²==4x²+4y²
BD²=(-5-5)²+(-5-5)²=200
AC²=BD²
4x²+4y²=200
x²+y²=50
(CA)⊥(BD)⇒(AC)·(BD)=0
(CA)={2x;2y}; (BD)={10;-10}
0=(AC)·(BD)=10·2x+(-10)·2y=20x-20y⇒x-y=0⇒y=x
x²+x²=50
2x²=50
x²=25
x=±5⇒y=x=±5
A(5;5) C(-5;-5) или A(-5;-5) C(5;5)