1) ответ : x1 = 0 , x2 = 1
2) ответ : x1 = 1 , x2 = -0,5
Объяснение:
1) x^2 / x+3 - x / x+3 = 0
т.к знаменатели у нас одинаковые,то мы можем записать одной дробью
x^2-x / x+3 = 0
ОДЗ : x+3 ≠ 0
x ≠ -3
мы знаем,что дробь равна нулю тогда,когда числитель равен нулю
x^2 - x = 0
x^2 = x
x1 = 0
x2 = 1
ответ : x1 = 0 , x2 = 1
3) x+2 / x - 5x+1 / x+1 = 0
первую дробь домножим на x+1 , вторую дробь на x
( (x+2)*(x+1) - (5x + 1)*x ) / x(x+1) = 0
ОДЗ : x(x+1) ≠ 0
x ≠ 0 и x ≠ -1
теперь выполняем умножения
( x^2 + x + 2x + 2 - 5x^2 - x ) / x(x+1) = 0
приравниванием числитель к нулю
x^2 + x + 2x + 2 - 5x^2 - x = 0
считаем
- 4x^2 + 2x + 2 = 0 (*-1)
4x^2 - 2x - 2 = 0
D : (-2)^2 - 4*4*(-2) = 4 + 32 + 36(6)
x1 = (2 + 6) / 2*4 = 8 / 8 = 1
x2 = (2 - 6) / 2*4 = -4 / 8 = - 1/2 = -0,5
ответ : x1 = 1 , x2 = -0,5
1)Найдём значения функции на концах отрезка:
y(3) = 3³ - 9*3² + 24*3 - 1= 27 - 81 + 72 - 1= 17
y(6) = 6³ - 9*6² + 24*6 - 1= 216 - 324 + 144 - 1 = 35
2) Найдём критические точки, принадлежащие этому отрезку, для этого найдём производную и приравняем её к нулю:
y' = (x³ - 9x² + 24x - 1)' = 3x² - 18x + 24
3x² - 18x + 24 = 0
x² - 6x + 8 = 0
x₁ = 4 x₂ = 2 - по теореме, обратной теореме Виетта.
x = 2 - не подходит так как не принадлежит отрезку [3 ; 6]
3) Найдём значение функции в критической точке x = 4:
y(4) = 4³ - 9*4² + 24*4 - 1= 64 - 144 + 96 - 1 = 15
4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
Наибольшее значение равно 35, а наименьшее 15.
1) ответ : x1 = 0 , x2 = 1
2) ответ : x1 = 1 , x2 = -0,5
Объяснение:
1) x^2 / x+3 - x / x+3 = 0
т.к знаменатели у нас одинаковые,то мы можем записать одной дробью
x^2-x / x+3 = 0
ОДЗ : x+3 ≠ 0
x ≠ -3
мы знаем,что дробь равна нулю тогда,когда числитель равен нулю
x^2 - x = 0
x^2 = x
x1 = 0
x2 = 1
ответ : x1 = 0 , x2 = 1
3) x+2 / x - 5x+1 / x+1 = 0
первую дробь домножим на x+1 , вторую дробь на x
( (x+2)*(x+1) - (5x + 1)*x ) / x(x+1) = 0
ОДЗ : x(x+1) ≠ 0
x ≠ 0 и x ≠ -1
теперь выполняем умножения
( x^2 + x + 2x + 2 - 5x^2 - x ) / x(x+1) = 0
приравниванием числитель к нулю
x^2 + x + 2x + 2 - 5x^2 - x = 0
считаем
- 4x^2 + 2x + 2 = 0 (*-1)
4x^2 - 2x - 2 = 0
D : (-2)^2 - 4*4*(-2) = 4 + 32 + 36(6)
x1 = (2 + 6) / 2*4 = 8 / 8 = 1
x2 = (2 - 6) / 2*4 = -4 / 8 = - 1/2 = -0,5
ответ : x1 = 1 , x2 = -0,5
1)Найдём значения функции на концах отрезка:
y(3) = 3³ - 9*3² + 24*3 - 1= 27 - 81 + 72 - 1= 17
y(6) = 6³ - 9*6² + 24*6 - 1= 216 - 324 + 144 - 1 = 35
2) Найдём критические точки, принадлежащие этому отрезку, для этого найдём производную и приравняем её к нулю:
y' = (x³ - 9x² + 24x - 1)' = 3x² - 18x + 24
3x² - 18x + 24 = 0
x² - 6x + 8 = 0
x₁ = 4 x₂ = 2 - по теореме, обратной теореме Виетта.
x = 2 - не подходит так как не принадлежит отрезку [3 ; 6]
3) Найдём значение функции в критической точке x = 4:
y(4) = 4³ - 9*4² + 24*4 - 1= 64 - 144 + 96 - 1 = 15
4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
Наибольшее значение равно 35, а наименьшее 15.
Объяснение: