У этой задачи есть 2 варианта решения, тк в задаче не указано направление течения реки.
Предположим, что направление течения из А в В. -> первый катер(к1) двигается ПО течению реки, а второй катер(к2) ПРОТИВ(потому что он плывет в противоположном направлении).
1) 20+3= 23(км/ч)- скорость к1 ПО течению.
2) 16-3=13(км/ч)- скорость к2 ПРОТИВ течения.
3) так как катеры двигаются одновременно, то найдем их общую скорость:
23+13=36(км/ч)- общая скорость к2 и к1.
4) время=расстояние/скорость ->
72/36=2(ч)- через столько встретятся к1 и к2.
Теперь ситуация противоположная. Течение идёт из В в А. ->
1) 16+3=19(км/ч)- скорость к2 (тк теперь он плывет по течению)
2) 20-3=17(км/ч)- скорость к1
3) 17+19=36(км/ч)- общая скорость к1 и к2.
4) 72/36=2(ч)- через столько встретятся к1 и к2.
Как видишь, ответы получились одинаковые. Так что выбирай тот который понравился больше)
1) f(x) - функция, графиком которой является парабола ветвями вниз, пересекающая ось Ох в двух точках. Значит, ее площадь фигуры, отсекаемой от параболы осью Ох, нужно рассчитывать как определенный интеграл этой функции от а до b, где а и b - точки, в которых f(x) обращается в нуль, т.е. корни уравнения 6+x-x^2=0. Найдем дискриминант D=1+24=25 и решим уравнение: x=(-1 плюс-минус 5)/(-2); х₁=-2; х₂=3. Итак, найдем площадь:
2) а) Сначала найдем точки пересечения графиков указанных функций, для чего решим уравнение
Площадь, которую мы должны найти, равняется модулю разности опред. интеграла функции у=х^2-х с пределами в точках 0 и 4 и площади треугольника, образованного прямой у=3х, осью абсцисс и прямой х=4. Катеты этого треугольника равны 4 и 12 (т.к. 4-0=4 и 3*4=12), значит площадь его равна 4*12/2=4*6=24. Найдем интеграл и вычтем из него 24.
через 2 часа.
Объяснение:
У этой задачи есть 2 варианта решения, тк в задаче не указано направление течения реки.
Предположим, что направление течения из А в В. -> первый катер(к1) двигается ПО течению реки, а второй катер(к2) ПРОТИВ(потому что он плывет в противоположном направлении).
1) 20+3= 23(км/ч)- скорость к1 ПО течению.
2) 16-3=13(км/ч)- скорость к2 ПРОТИВ течения.
3) так как катеры двигаются одновременно, то найдем их общую скорость:
23+13=36(км/ч)- общая скорость к2 и к1.
4) время=расстояние/скорость ->
72/36=2(ч)- через столько встретятся к1 и к2.
Теперь ситуация противоположная. Течение идёт из В в А. ->
1) 16+3=19(км/ч)- скорость к2 (тк теперь он плывет по течению)
2) 20-3=17(км/ч)- скорость к1
3) 17+19=36(км/ч)- общая скорость к1 и к2.
4) 72/36=2(ч)- через столько встретятся к1 и к2.
Как видишь, ответы получились одинаковые. Так что выбирай тот который понравился больше)
f(x) - функция, графиком которой является парабола ветвями вниз, пересекающая ось Ох в двух точках. Значит, ее площадь фигуры, отсекаемой от параболы осью Ох, нужно рассчитывать как определенный интеграл этой функции от а до b, где а и b - точки, в которых f(x) обращается в нуль, т.е. корни уравнения 6+x-x^2=0. Найдем дискриминант D=1+24=25 и решим уравнение:
x=(-1 плюс-минус 5)/(-2); х₁=-2; х₂=3. Итак, найдем площадь:
2)
а)
Сначала найдем точки пересечения графиков указанных функций, для чего решим уравнение
Площадь, которую мы должны найти, равняется модулю разности опред. интеграла функции у=х^2-х с пределами в точках 0 и 4 и площади треугольника, образованного прямой у=3х, осью абсцисс и прямой х=4. Катеты этого треугольника равны 4 и 12 (т.к. 4-0=4 и 3*4=12), значит площадь его равна 4*12/2=4*6=24. Найдем интеграл и вычтем из него 24.
б)