Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
Подставляем:
Подставляем в формулу:
a^10 - a^5*b^8 + 25*b^16 = (a^5)^2 - 2*a^5*5b^8 + 9a^5*b^8 + (5b^8)^2 =
= (a^5 - 5b^8)^2 + 9a^5*b^8 = (a^5 - 5b^8)^2 + (3a^(2,5)*b^4)^2
2) (4x-3)(4x+3) - (4x-1)^2 = 3x
16x^2 - 9 - 16x^2 + 8x - 1 = 3x
8x - 3x = 9 + 1
5x = 10
x = 2
3) (3x-1)^2 - 7 < (9x+2)*x + 2
9x^2 - 6x + 1 - 7 < 9x^2 + 2x + 2
-6x - 2x < 2 + 7 - 1
-8x < 8
x > -1
Наименьшее цело число, удовлетворяющее неравенству:
x = 0
Так как неравенство строгое, то -1 не подходит.