Пусть х (км/ч) скорость грузовика, тогда (х+20) км/ч - скорость легковой машины. Время, затраченное грузовиком: 480/х (ч), а время, затраченное легковой машиной: 480/(х+20) (ч). Составим уравнение.
480/х=480/(х+20)+2
480*(х+20)=480х+2х*(х+20)
480х+9600=480х+2х^2+40х
2х^2+40х-9600=0
Делим всё на 2
х^2+20х-4800=0
Находим дискриминант квадратного уравнения:
D=20^2-4*1*(-4800)=400+19200=19600
корень из 19600 равен 140
х1=(-20+140)/2=120/2=60
х2=(-20-140)/2=-80
Отрицательный корень отбрасываем.
60 км/ч -скорость грузовика
60+20=80 (км/ч) - скорость легковой машины.
ответ: скорость грузовика 60 км/ч, скорость легковой машины 80 км/ч.
(х²+2х+1)(х²+2х)=12
Замена переменной
х²+2х=t
(t+1)·t=12
t²+t-12=0
D=1+48=49
t=(-1-7)/2=-4 или t=(-1+7)/2=3
x²+2x=-4 или х²+2х=3
х²+2х+4=0 x²+2x-3=0
D=4-16<0 D=4+12=16
уравнение не x=(-2-4)/2=-3 или х=(-2+4)/2=1
имеет корней
ответ. -3 ; 1
3) (х²-4x+1)(x²-4x+2)=12
Замена переменной
х²-4х+1=t
t·(t+1)=12
t²+t-12=0
D=1+48=49
t=(-1-7)/2=-4 или t=(-1+7)/2=3
x²-4x+1=-4 или х²-4х+1=3
х²-4х+5=0 x²-4x-2=0
D=16-20<0 D=16-4·(-2)=24
уравнение не x=(-2-2√6)/2=-1-√6 или х=(-2+2√6)/2=-1+√6
имеет корней
ответ. -1-√6 ; -1+√6
Пусть х (км/ч) скорость грузовика, тогда (х+20) км/ч - скорость легковой машины. Время, затраченное грузовиком: 480/х (ч), а время, затраченное легковой машиной: 480/(х+20) (ч). Составим уравнение.
480/х=480/(х+20)+2
480*(х+20)=480х+2х*(х+20)
480х+9600=480х+2х^2+40х
2х^2+40х-9600=0
Делим всё на 2
х^2+20х-4800=0
Находим дискриминант квадратного уравнения:
D=20^2-4*1*(-4800)=400+19200=19600
корень из 19600 равен 140
х1=(-20+140)/2=120/2=60
х2=(-20-140)/2=-80
Отрицательный корень отбрасываем.
60 км/ч -скорость грузовика
60+20=80 (км/ч) - скорость легковой машины.
ответ: скорость грузовика 60 км/ч, скорость легковой машины 80 км/ч.