Что бы построить график данной функции, исследуем данную функцию:
1. Область определения: Так как данная функция имеет смысл при любом х. То:
2. Область значения: Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0): - где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции: Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений. Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания. Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то: --------------------------------------------------------------- 6. Экстремум функции. Так как а>0 и функция квадратичная. То вершина является минимумом данной функции. Следовательно:
2)(y - 3)(1 + b)
3) (m - 3)(3n + 5m)
4) ( c - d)(7a - 2b)
5) ( x + y)( a^2 + b^3)
6) ( a^2 + 2b^2)(x +y)
7) a(b - c) + c( b - c) = ( b - c)(a + c)
8) 2b( x - y) + ( x - y) = ( x - y)( 2b + 1)
9) 6(a - 2) - a( a - 2)= ( a - 2)(6 - a)
10) a^2( m - 2) - b( m - 2) = ( m - 2)(a^2 - b)
11) x( x - y) - y(x - y) - 3( x - y) = ( x - y)(x - y - 3)
12) a( b - 3) - ( b - 3) + b( b - 3) = ( b - 3)(a - 1 + b)
13) 5( a - b)( a - b) + (a - b)(a+ b) = (a - b)(5(a - b) + a + b) =
( a - b)(5a - 5b + a + b) = ( a - b)(6a - 4b)= 2(3a - 2b)(a - b)
14) a^3( 2 + a) + a^2(2 + a)^2 = (2 + a)(a^3 + a^2(2 + a)) = ( 2 +a)(a^3 + 2a^2 + a^3) = (2 + a)(2a^3 + 2a^2) = 2a^2(a + 1)(a + 2)
Что бы построить график данной функции, исследуем данную функцию:
1. Область определения:
Так как данная функция имеет смысл при любом х. То:
2. Область значения:
Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0):
- где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции:
Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений.
Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания.
Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то:
---------------------------------------------------------------
6. Экстремум функции.
Так как а>0 и функция квадратичная. То вершина является минимумом данной функции.
Следовательно:
---------------------------------------------------------------
7. Ось симметрии
Зная вершину, имеем следующее уравнение оси симметрии:
Основываясь на данных, строим график данной функции. (во вложении).